En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.

Property Value
dbo:abstract
  • En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E. Cette définition repose d'une part sur l'existence de bases, corollaire du théorème de la base incomplète, et d'autre part sur le théorème de la dimension pour les espaces vectoriels, qui assure que deux bases d'un même espace ont même cardinal. Cette dimension porte parfois le nom du mathématicien allemand Georg Hamel. À isomorphisme près, les K-espaces vectoriels sont classifiés par leurs dimensions. Une terminologie est spécifique aux espaces de petite dimension : * Espace nul : désigne un espace E de dimension 0. Il admet comme unique élément son vecteur nul. La famille vide est une famille libre maximale ; c'est l'unique base de E ; * Droite vectorielle ou droite : désigne un espace vectoriel E de dimension 1. Tout vecteur non nul de E forme une base de E ; * Plan vectoriel ou plan : désigne un espace vectoriel E de dimension 2. Tout couple (u,v) de vecteurs non colinéaires de E forme une base de E. (fr)
  • En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E. Cette définition repose d'une part sur l'existence de bases, corollaire du théorème de la base incomplète, et d'autre part sur le théorème de la dimension pour les espaces vectoriels, qui assure que deux bases d'un même espace ont même cardinal. Cette dimension porte parfois le nom du mathématicien allemand Georg Hamel. À isomorphisme près, les K-espaces vectoriels sont classifiés par leurs dimensions. Une terminologie est spécifique aux espaces de petite dimension : * Espace nul : désigne un espace E de dimension 0. Il admet comme unique élément son vecteur nul. La famille vide est une famille libre maximale ; c'est l'unique base de E ; * Droite vectorielle ou droite : désigne un espace vectoriel E de dimension 1. Tout vecteur non nul de E forme une base de E ; * Plan vectoriel ou plan : désigne un espace vectoriel E de dimension 2. Tout couple (u,v) de vecteurs non colinéaires de E forme une base de E. (fr)
dbo:isPartOf
dbo:namedAfter
dbo:wikiPageID
  • 725113 (xsd:integer)
dbo:wikiPageLength
  • 8012 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 189567294 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E. (fr)
  • En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E. (fr)
rdfs:label
  • Chiều (không gian vectơ) (vi)
  • Dimensie (lineaire algebra) (nl)
  • Dimension (vector space) (en)
  • Dimension d'un espace vectoriel (fr)
  • Dimensione (spazio vettoriale) (it)
  • Dimensió d'un espai vectorial (ca)
  • بعد (فضاء متجهي) (ar)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of