En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc.

Property Value
dbo:abstract
  • En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc. (fr)
  • En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc. (fr)
dbo:wikiPageID
  • 207293 (xsd:integer)
dbo:wikiPageLength
  • 3121 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 183252989 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc. (fr)
  • En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc. (fr)
rdfs:label
  • Hiperplano (eu)
  • Hiperplà (ca)
  • Hiperpłaszczyzna (pl)
  • Hyperplan (fr)
  • Iperpiano (it)
  • Гиперплоскость (ru)
  • مستو فائق (ar)
  • 超平面 (ja)
  • 超平面 (zh)
  • Hiperplano (eu)
  • Hiperplà (ca)
  • Hiperpłaszczyzna (pl)
  • Hyperplan (fr)
  • Iperpiano (it)
  • Гиперплоскость (ru)
  • مستو فائق (ar)
  • 超平面 (ja)
  • 超平面 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of