Property |
Value |
dbo:abstract
|
- En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
- En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
|
dbo:namedAfter
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 17712 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
- En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
|
rdfs:label
|
- Dirichlet's unit theorem (en)
- Dirichletscher Einheitensatz (de)
- Eenheidsstelling van Dirichlet (nl)
- Teorema de las unidades de Dirichlet (es)
- Teorema de les unitats de Dirichlet (ca)
- Théorème des unités de Dirichlet (fr)
- Теорема Діріхле про оборотні елементи (uk)
- ディリクレの単数定理 (ja)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |