En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles.

Property Value
dbo:abstract
  • En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
  • En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
dbo:namedAfter
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 360072 (xsd:integer)
dbo:wikiPageLength
  • 17712 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 179030107 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
  • En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps ℚ des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang r1 + r2 – 1, où r1 désigne le nombre de morphismes de K dans ℝ et r2 le nombre de paires de morphismes conjugués de K dans ℂ à valeurs non toutes réelles. (fr)
rdfs:label
  • Dirichlet's unit theorem (en)
  • Dirichletscher Einheitensatz (de)
  • Eenheidsstelling van Dirichlet (nl)
  • Teorema de las unidades de Dirichlet (es)
  • Teorema de les unitats de Dirichlet (ca)
  • Théorème des unités de Dirichlet (fr)
  • Теорема Діріхле про оборотні елементи (uk)
  • ディリクレの単数定理 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of