En mathématiques, le groupe spécial orthogonal d'une forme quadratique q est un sous-groupe de son groupe orthogonal O(q). Il est constitué des éléments dont le déterminant est +1, en supposant que la forme quadratique est non dégénérée et que la caractéristique du corps de base est différente de 2. Ce sous-groupe, noté SO(q), est donc normal et même d'indice 2 (autrement dit, la composition dans O(q) suit la règle des signes : le composé de deux éléments est dans SO(q) si et seulement si ces éléments sont tous deux dans SO(q) ou tous deux dans son complémentaire).

Property Value
dbo:abstract
  • En mathématiques, le groupe spécial orthogonal d'une forme quadratique q est un sous-groupe de son groupe orthogonal O(q). Il est constitué des éléments dont le déterminant est +1, en supposant que la forme quadratique est non dégénérée et que la caractéristique du corps de base est différente de 2. Ce sous-groupe, noté SO(q), est donc normal et même d'indice 2 (autrement dit, la composition dans O(q) suit la règle des signes : le composé de deux éléments est dans SO(q) si et seulement si ces éléments sont tous deux dans SO(q) ou tous deux dans son complémentaire). Sur les réels à n dimensions, on le note couramment , et moins couramment , le deuxième paramètre de la notation étant le corps de base de ce groupe. On dit aussi que c'est le groupe des matrices de rotations à n dimensions. Les réflexions (par rapport à un hyperplan vectoriel) sont des exemples de transformations orthogonales de déterminant –1 ; la composée d'un nombre pair de telles transformations est une rotation. Sur un espace vectoriel à n dimensions, les applications linéaires (identifiables aux matrices) forment elles-mêmes un espace à dimensions, mais parmi celles-ci, le groupe n'a que degrés de liberté. C'est pourquoi une rotation en 2 dimensions s'exprime par un nombre seul alors que pour une rotation en 3 dimensions, on doit utiliser 3 nombres (voir « Angles d'Euler »). (fr)
  • En mathématiques, le groupe spécial orthogonal d'une forme quadratique q est un sous-groupe de son groupe orthogonal O(q). Il est constitué des éléments dont le déterminant est +1, en supposant que la forme quadratique est non dégénérée et que la caractéristique du corps de base est différente de 2. Ce sous-groupe, noté SO(q), est donc normal et même d'indice 2 (autrement dit, la composition dans O(q) suit la règle des signes : le composé de deux éléments est dans SO(q) si et seulement si ces éléments sont tous deux dans SO(q) ou tous deux dans son complémentaire). Sur les réels à n dimensions, on le note couramment , et moins couramment , le deuxième paramètre de la notation étant le corps de base de ce groupe. On dit aussi que c'est le groupe des matrices de rotations à n dimensions. Les réflexions (par rapport à un hyperplan vectoriel) sont des exemples de transformations orthogonales de déterminant –1 ; la composée d'un nombre pair de telles transformations est une rotation. Sur un espace vectoriel à n dimensions, les applications linéaires (identifiables aux matrices) forment elles-mêmes un espace à dimensions, mais parmi celles-ci, le groupe n'a que degrés de liberté. C'est pourquoi une rotation en 2 dimensions s'exprime par un nombre seul alors que pour une rotation en 3 dimensions, on doit utiliser 3 nombres (voir « Angles d'Euler »). (fr)
dbo:wikiPageID
  • 150213 (xsd:integer)
dbo:wikiPageLength
  • 4563 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 173206853 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, le groupe spécial orthogonal d'une forme quadratique q est un sous-groupe de son groupe orthogonal O(q). Il est constitué des éléments dont le déterminant est +1, en supposant que la forme quadratique est non dégénérée et que la caractéristique du corps de base est différente de 2. Ce sous-groupe, noté SO(q), est donc normal et même d'indice 2 (autrement dit, la composition dans O(q) suit la règle des signes : le composé de deux éléments est dans SO(q) si et seulement si ces éléments sont tous deux dans SO(q) ou tous deux dans son complémentaire). (fr)
  • En mathématiques, le groupe spécial orthogonal d'une forme quadratique q est un sous-groupe de son groupe orthogonal O(q). Il est constitué des éléments dont le déterminant est +1, en supposant que la forme quadratique est non dégénérée et que la caractéristique du corps de base est différente de 2. Ce sous-groupe, noté SO(q), est donc normal et même d'indice 2 (autrement dit, la composition dans O(q) suit la règle des signes : le composé de deux éléments est dans SO(q) si et seulement si ces éléments sont tous deux dans SO(q) ou tous deux dans son complémentaire). (fr)
rdfs:label
  • Спеціальна ортогональна група (uk)
  • Groupe spécial orthogonal (fr)
  • Спеціальна ортогональна група (uk)
  • Groupe spécial orthogonal (fr)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of