Un multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentielles.

Property Value
dbo:abstract
  • Un multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentielles. L'ensemble des multivecteurs d'un espace vectoriel V est gradué par le nombre de vecteurs de la base de V qui forment un multivecteur de l’ensemble. Un multivecteur produit de p vecteurs de base est appelé multivecteur de grade p, ou p-vecteur. La combinaison linéaire de p-vecteurs de base forme un espace vectoriel noté Λp(V). Le grade maximal d'un multivecteur est la dimension de V. Le produit d'un p-vecteur et d'un k-vecteur est un (k + p)-vecteur, l'ensemble des combinaisons linéaires de tous les multivecteurs sur V est une algèbre associative et close par le produit extérieur. Cette algèbre, notée Λ(V), est appelée l'algèbre extérieure de V. (fr)
  • Un multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentielles. L'ensemble des multivecteurs d'un espace vectoriel V est gradué par le nombre de vecteurs de la base de V qui forment un multivecteur de l’ensemble. Un multivecteur produit de p vecteurs de base est appelé multivecteur de grade p, ou p-vecteur. La combinaison linéaire de p-vecteurs de base forme un espace vectoriel noté Λp(V). Le grade maximal d'un multivecteur est la dimension de V. Le produit d'un p-vecteur et d'un k-vecteur est un (k + p)-vecteur, l'ensemble des combinaisons linéaires de tous les multivecteurs sur V est une algèbre associative et close par le produit extérieur. Cette algèbre, notée Λ(V), est appelée l'algèbre extérieure de V. (fr)
dbo:isPartOf
dbo:wikiPageID
  • 1483696 (xsd:integer)
dbo:wikiPageLength
  • 4608 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 142844697 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Un multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentielles. (fr)
  • Un multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentielles. (fr)
rdfs:label
  • Multivecteur (fr)
  • Multivektor (de)
  • Мультивектор (ru)
  • Полівектор (uk)
  • Multivecteur (fr)
  • Multivektor (de)
  • Мультивектор (ru)
  • Полівектор (uk)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of