PropertyValue
dbpedia-owl:abstract
• 平方根（へいほうこん、英語: square root）とは、数に対して、平方すると元の値に等しくなる数のことである。幾何学的には、与えられた数を面積とする正方形を考えるとき、絶対値がその一辺の長さである2数であり、一つの幾何学的意味付けができる。また、単位長さと任意の長さ x が与えられたとき、長さ x の平方根を定規とコンパスを用いて作図することができる。二乗根（にじょうこん）、自乗根（じじょうこん）とも言う。
• In mathematics, a square root of a number a is a number y such that y2 = a, in other words, a number y whose square (the result of multiplying the number by itself, or y × y) is a. For example, 4 and −4 are square roots of 16 because 42 = (−4)2 = 16.Every non-negative real number a has a unique non-negative square root, called the principal square root, which is denoted by √a, where √ is called the radical sign or radix. For example, the principal square root of 9 is 3, denoted √9 = 3, because 32 = 3 × 3 = 9 and 3 is non-negative. The term whose root is being considered is known as the radicand. The radicand is the number or expression underneath the radical sign, in this example 9.Every positive number a has two square roots: √a, which is positive, and −√a, which is negative. Together, these two roots are denoted ± √a (see ± shorthand). Although the principal square root of a positive number is only one of its two square roots, the designation "the square root" is often used to refer to the principal square root. For positive a, the principal square root can also be written in exponent notation, as a1/2.Square roots of negative numbers can be discussed within the framework of complex numbers. More generally, square roots can be considered in any context in which a notion of "squaring" of some mathematical objects is defined (including algebras of matrices, endomorphism rings, etc.)Square roots of positive whole numbers that are not perfect squares are always irrational numbers: numbers not expressible as a ratio of two integers (that is to say they cannot be written exactly as m/n, where m and n are integers). This is the theorem Euclid X, 9 almost certainly due to Theaetetus dating back to circa 380 BC.The particular case √2 is assumed to date back earlier to the Pythagoreans and is traditionally attributed to Hippasus.[citation needed] It is exactly the length of the diagonal of a square with side length 1.
• De vierkantswortel, tweedemachtswortel of ook eenvoudigweg wortel, is het eenvoudigste voorbeeld van het wiskundige begrip wortel.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
• 11817 (xsd:integer)
dbpedia-owl:wikiPageLength
• 28805 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
• 92 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
• 110474833 (xsd:integer)
prop-fr:contenu
• Pour trouver tel que , on pose le système suivant : : : : Par identification de la partie réelle et imaginaire, on obtient : : On en déduit alors et en ajoutant et soustrayant les première et troisième équations. Le signe du produit est celui de , d'où la première expression des deux couples de solutions pour et . Mais une manière moins traditionnelle de résoudre ce système est de faire dans un premier temps seulement la somme : : ce qui, si z n'est pas un réel négatif, mène à la dernière formule.
• Prenons la valeur rapprochée . On calcule de proche en proche : : : : On a ainsi obtenu la racine carrée de 2 à la précision .
prop-fr:titre
• Exemple :
• Exemple : =12,34
• Méthode de calcul des racines carrées w d'un nombre complexe z=a+ib
prop-fr:wikiPageUsesTemplate
prop-fr:wikibooks
• CMC/3ème/Racines carrées
prop-fr:wikibooksTitre
• Les racines carrées en classe de troisième
prop-fr:wikiversity
• Racine carrée
prop-fr:wikiversityTitre
• Racine carrée
dcterms:subject
rdfs:comment
• 平方根（へいほうこん、英語: square root）とは、数に対して、平方すると元の値に等しくなる数のことである。幾何学的には、与えられた数を面積とする正方形を考えるとき、絶対値がその一辺の長さである2数であり、一つの幾何学的意味付けができる。また、単位長さと任意の長さ x が与えられたとき、長さ x の平方根を定規とコンパスを用いて作図することができる。二乗根（にじょうこん）、自乗根（じじょうこん）とも言う。
• De vierkantswortel, tweedemachtswortel of ook eenvoudigweg wortel, is het eenvoudigste voorbeeld van het wiskundige begrip wortel.
• In mathematics, a square root of a number a is a number y such that y2 = a, in other words, a number y whose square (the result of multiplying the number by itself, or y × y) is a. For example, 4 and −4 are square roots of 16 because 42 = (−4)2 = 16.Every non-negative real number a has a unique non-negative square root, called the principal square root, which is denoted by √a, where √ is called the radical sign or radix.
rdfs:label
• Racine carrée
• Druhá odmocnina
• Erro karratu
• Karekök
• Négyzetgyök