La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl Friedrich Gauss à la fin du XVIIIe siècle et présentée au public dans ses Disquisitiones arithmeticae en 1801. Elle est aujourd'hui couramment utilisée en théorie des nombres, en algèbre générale et en cryptographie. Elle représente le fondement d'une branche mathématique appelée arithmétique modulaire.

Property Value
dbo:abstract
  • La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl Friedrich Gauss à la fin du XVIIIe siècle et présentée au public dans ses Disquisitiones arithmeticae en 1801. Elle est aujourd'hui couramment utilisée en théorie des nombres, en algèbre générale et en cryptographie. Elle représente le fondement d'une branche mathématique appelée arithmétique modulaire. C'est une arithmétique où l'on ne raisonne pas directement sur les nombres, mais sur leurs restes respectifs par la division euclidienne par un certain entier : le module (qui sera noté n tout au long de l'article). On parle alors de congruence. L'histoire, les outils développés pour l'arithmétique modulaire, ainsi que les applications sont traités dans l'article « Arithmétique modulaire ». Une analyse plus exhaustive et moins didactique est proposée dans l'article « Anneau ℤ/nℤ ». (fr)
  • La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl Friedrich Gauss à la fin du XVIIIe siècle et présentée au public dans ses Disquisitiones arithmeticae en 1801. Elle est aujourd'hui couramment utilisée en théorie des nombres, en algèbre générale et en cryptographie. Elle représente le fondement d'une branche mathématique appelée arithmétique modulaire. C'est une arithmétique où l'on ne raisonne pas directement sur les nombres, mais sur leurs restes respectifs par la division euclidienne par un certain entier : le module (qui sera noté n tout au long de l'article). On parle alors de congruence. L'histoire, les outils développés pour l'arithmétique modulaire, ainsi que les applications sont traités dans l'article « Arithmétique modulaire ». Une analyse plus exhaustive et moins didactique est proposée dans l'article « Anneau ℤ/nℤ ». (fr)
dbo:thumbnail
dbo:wikiPageID
  • 21299 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 18399 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 186027688 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:v
  • Arithmétique/Divisibilité et congruences dans Z (fr)
  • Arithmétique/Divisibilité et congruences dans Z (fr)
prop-fr:wikiPageUsesTemplate
prop-fr:wikiversityTitre
  • Arithmétique : Divisibilité et congruences dans Z (fr)
  • Arithmétique : Divisibilité et congruences dans Z (fr)
dct:subject
rdfs:comment
  • La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl Friedrich Gauss à la fin du XVIIIe siècle et présentée au public dans ses Disquisitiones arithmeticae en 1801. Elle est aujourd'hui couramment utilisée en théorie des nombres, en algèbre générale et en cryptographie. Elle représente le fondement d'une branche mathématique appelée arithmétique modulaire. (fr)
  • La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl Friedrich Gauss à la fin du XVIIIe siècle et présentée au public dans ses Disquisitiones arithmeticae en 1801. Elle est aujourd'hui couramment utilisée en théorie des nombres, en algèbre générale et en cryptographie. Elle représente le fondement d'une branche mathématique appelée arithmétique modulaire. (fr)
rdfs:label
  • Congruence (integers) (en)
  • Congruence sur les entiers (fr)
  • Congruencia (teoría de números) (es)
  • Congruència sobre els enters (ca)
  • Congruência (álgebra) (pt)
  • Kongruenz (Zahlentheorie) (als)
  • Modulus (wiskunde) (nl)
  • Сравнение по модулю (ru)
  • 同餘 (zh)
  • 整数の合同 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of