Property |
Value |
dbo:abstract
|
- En mathématiques, le théorème de Midy, dû au mathématicien français , est un énoncé concernant le développement décimal périodique d'une fraction a/p (comprise, sans perte de généralité, entre 0 et 1), où p est un nombre premier (différent de 2 et 5) tel que la période soit paire. Une telle fraction s'écrit et le théorème établit que les chiffres dans la deuxième moitié de la période sont les compléments à 9 de ceux qui leur correspondent dans la première moitié. En d'autres termes : ou encore : Par exemple, On peut donner des preuves expéditives de ce théorème en utilisant la théorie des groupes. On peut aussi le démontrer par des calculs d'algèbre élémentaire et de congruence sur les entiers. (fr)
- En mathématiques, le théorème de Midy, dû au mathématicien français , est un énoncé concernant le développement décimal périodique d'une fraction a/p (comprise, sans perte de généralité, entre 0 et 1), où p est un nombre premier (différent de 2 et 5) tel que la période soit paire. Une telle fraction s'écrit et le théorème établit que les chiffres dans la deuxième moitié de la période sont les compléments à 9 de ceux qui leur correspondent dans la première moitié. En d'autres termes : ou encore : Par exemple, On peut donner des preuves expéditives de ce théorème en utilisant la théorie des groupes. On peut aussi le démontrer par des calculs d'algèbre élémentaire et de congruence sur les entiers. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 12138 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, le théorème de Midy, dû au mathématicien français , est un énoncé concernant le développement décimal périodique d'une fraction a/p (comprise, sans perte de généralité, entre 0 et 1), où p est un nombre premier (différent de 2 et 5) tel que la période soit paire. Une telle fraction s'écrit et le théorème établit que les chiffres dans la deuxième moitié de la période sont les compléments à 9 de ceux qui leur correspondent dans la première moitié. En d'autres termes : ou encore : Par exemple, (fr)
- En mathématiques, le théorème de Midy, dû au mathématicien français , est un énoncé concernant le développement décimal périodique d'une fraction a/p (comprise, sans perte de généralité, entre 0 et 1), où p est un nombre premier (différent de 2 et 5) tel que la période soit paire. Une telle fraction s'écrit et le théorème établit que les chiffres dans la deuxième moitié de la période sont les compléments à 9 de ceux qui leur correspondent dans la première moitié. En d'autres termes : ou encore : Par exemple, (fr)
|
rdfs:label
|
- Midy's theorem (en)
- Stelling van Midy (nl)
- Théorème de Midy (fr)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |