dbo:abstract
|
- En théorie des nombres récréative, un nombre premier minimal pour une base donnée est un nombre premier pour lequel il n'existe pas de sous-suite plus courte de ses chiffres dans cette base qui forme un nombre premier. En base dix, il y a exactement 26 nombres premiers minimaux : 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 suite de l'OEIS. Par exemple, 409 est un premier minimal, car il n'y a pas de nombre premier parmi ses sous-suites que sont : 4, 0, 9, 40, 49, 09. La sous-suite n'a pas à être constituées de chiffres consécutifs, de sorte que 109 n'est pas un premier minimal, parce que 19 est premier. Similairement, il y a exactement 32 nombres composés qui n'ont pas de sous-suite composée plus courte : 4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70, 72, 75, 77, 111, 117, 171, 371, 711, 713, 731 suite de l'OEIS. Il y a 146 nombres premiers congru à 1 mod 4 qui n'ont pas de sous-suite plus courte congrue à 1 mod 4 : 5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 101, 109, 149, 181, 233, 277, 281, 349, 409, 433, 449, 677, 701, 709, 769, 821, 877, 881, 1669, 2221, 3001, 3121, 3169, 3221, 3301, 3833, 4969, 4993, 6469, 6833, 6949, 7121, 7477, 7949, 9001, 9049, 9221, 9649, 9833, 9901, 9949, ... suite de l'OEIS (fr)
- En théorie des nombres récréative, un nombre premier minimal pour une base donnée est un nombre premier pour lequel il n'existe pas de sous-suite plus courte de ses chiffres dans cette base qui forme un nombre premier. En base dix, il y a exactement 26 nombres premiers minimaux : 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 suite de l'OEIS. Par exemple, 409 est un premier minimal, car il n'y a pas de nombre premier parmi ses sous-suites que sont : 4, 0, 9, 40, 49, 09. La sous-suite n'a pas à être constituées de chiffres consécutifs, de sorte que 109 n'est pas un premier minimal, parce que 19 est premier. Similairement, il y a exactement 32 nombres composés qui n'ont pas de sous-suite composée plus courte : 4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70, 72, 75, 77, 111, 117, 171, 371, 711, 713, 731 suite de l'OEIS. Il y a 146 nombres premiers congru à 1 mod 4 qui n'ont pas de sous-suite plus courte congrue à 1 mod 4 : 5, 13, 17, 29, 37, 41, 61, 73, 89, 97, 101, 109, 149, 181, 233, 277, 281, 349, 409, 433, 449, 677, 701, 709, 769, 821, 877, 881, 1669, 2221, 3001, 3121, 3169, 3221, 3301, 3833, 4969, 4993, 6469, 6833, 6949, 7121, 7477, 7949, 9001, 9049, 9221, 9649, 9833, 9901, 9949, ... suite de l'OEIS (fr)
|
rdfs:comment
|
- En théorie des nombres récréative, un nombre premier minimal pour une base donnée est un nombre premier pour lequel il n'existe pas de sous-suite plus courte de ses chiffres dans cette base qui forme un nombre premier. En base dix, il y a exactement 26 nombres premiers minimaux : 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 suite de l'OEIS. Similairement, il y a exactement 32 nombres composés qui n'ont pas de sous-suite composée plus courte : (fr)
- En théorie des nombres récréative, un nombre premier minimal pour une base donnée est un nombre premier pour lequel il n'existe pas de sous-suite plus courte de ses chiffres dans cette base qui forme un nombre premier. En base dix, il y a exactement 26 nombres premiers minimaux : 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 suite de l'OEIS. Similairement, il y a exactement 32 nombres composés qui n'ont pas de sous-suite composée plus courte : (fr)
|