Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés. On utilise ici le deuxième point de vue, plus classique.

Property Value
dbo:abstract
  • Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés. On utilise ici le deuxième point de vue, plus classique. (fr)
  • Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés. On utilise ici le deuxième point de vue, plus classique. (fr)
dbo:wikiPageID
  • 579354 (xsd:integer)
dbo:wikiPageLength
  • 18359 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 191253510 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés. On utilise ici le deuxième point de vue, plus classique. (fr)
  • Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés. On utilise ici le deuxième point de vue, plus classique. (fr)
rdfs:label
  • Algebraische Varietät (de)
  • Algebraïsche variëteit (nl)
  • Varietat algebraica (ca)
  • Variété algébrique (fr)
  • Đa tạp đại số (vi)
  • Алгебричний многовид (uk)
  • Алгебраическое многообразие (ru)
  • 代数多様体 (ja)
  • Algebraische Varietät (de)
  • Algebraïsche variëteit (nl)
  • Varietat algebraica (ca)
  • Variété algébrique (fr)
  • Đa tạp đại số (vi)
  • Алгебричний многовид (uk)
  • Алгебраическое многообразие (ru)
  • 代数多様体 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:discipline of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of