En mathématiques, le théorème de Hirzebruch-Riemann-Roch, du nom de Friedrich Hirzebruch, Bernhard Riemann et Gustav Roch, est un résultat démontré par Hirzebruch en 1954 donnant une réponse au problème de Riemann-Roch pour les variétés algébriques complexes en toutes dimensions. Ce fut la première généralisation du théorème de Riemann-Roch classique pour les surfaces de Riemann, avant le théorème de Grothendieck-Hirzebruch-Riemann-Roch démontré trois ans plus tard.

Property Value
dbo:abstract
  • En mathématiques, le théorème de Hirzebruch-Riemann-Roch, du nom de Friedrich Hirzebruch, Bernhard Riemann et Gustav Roch, est un résultat démontré par Hirzebruch en 1954 donnant une réponse au problème de Riemann-Roch pour les variétés algébriques complexes en toutes dimensions. Ce fut la première généralisation du théorème de Riemann-Roch classique pour les surfaces de Riemann, avant le théorème de Grothendieck-Hirzebruch-Riemann-Roch démontré trois ans plus tard. (fr)
  • En mathématiques, le théorème de Hirzebruch-Riemann-Roch, du nom de Friedrich Hirzebruch, Bernhard Riemann et Gustav Roch, est un résultat démontré par Hirzebruch en 1954 donnant une réponse au problème de Riemann-Roch pour les variétés algébriques complexes en toutes dimensions. Ce fut la première généralisation du théorème de Riemann-Roch classique pour les surfaces de Riemann, avant le théorème de Grothendieck-Hirzebruch-Riemann-Roch démontré trois ans plus tard. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 7349301 (xsd:integer)
dbo:wikiPageLength
  • 2062 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 157538899 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, le théorème de Hirzebruch-Riemann-Roch, du nom de Friedrich Hirzebruch, Bernhard Riemann et Gustav Roch, est un résultat démontré par Hirzebruch en 1954 donnant une réponse au problème de Riemann-Roch pour les variétés algébriques complexes en toutes dimensions. Ce fut la première généralisation du théorème de Riemann-Roch classique pour les surfaces de Riemann, avant le théorème de Grothendieck-Hirzebruch-Riemann-Roch démontré trois ans plus tard. (fr)
  • En mathématiques, le théorème de Hirzebruch-Riemann-Roch, du nom de Friedrich Hirzebruch, Bernhard Riemann et Gustav Roch, est un résultat démontré par Hirzebruch en 1954 donnant une réponse au problème de Riemann-Roch pour les variétés algébriques complexes en toutes dimensions. Ce fut la première généralisation du théorème de Riemann-Roch classique pour les surfaces de Riemann, avant le théorème de Grothendieck-Hirzebruch-Riemann-Roch démontré trois ans plus tard. (fr)
rdfs:label
  • Hirzebruch–Riemann–Roch theorem (en)
  • Satz von Hirzebruch-Riemann-Roch (de)
  • Stelling van Hirzebruch-Riemann-Roch (nl)
  • Théorème de Hirzebruch-Riemann-Roch (fr)
  • ヒルツェブルフ・リーマン・ロッホの定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of