En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies. La fonction zêta locale possède des coefficients dérivés des nombres Nk de points sur le corps à qk éléments.

Property Value
dbo:abstract
  • En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies. La fonction zêta locale possède des coefficients dérivés des nombres Nk de points sur le corps à qk éléments. Weil conjectura que ces fonctions zêta devaient être des fonctions rationnelles, devaient satisfaire une forme d'équation fonctionnelle, et devaient avoir leurs zéros dans des endroits restreints. Les deux dernières parties étaient tout à fait consciemment modélisées sur la fonction zêta de Riemann et l'hypothèse de Riemann. (fr)
  • En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies. La fonction zêta locale possède des coefficients dérivés des nombres Nk de points sur le corps à qk éléments. Weil conjectura que ces fonctions zêta devaient être des fonctions rationnelles, devaient satisfaire une forme d'équation fonctionnelle, et devaient avoir leurs zéros dans des endroits restreints. Les deux dernières parties étaient tout à fait consciemment modélisées sur la fonction zêta de Riemann et l'hypothèse de Riemann. (fr)
dbo:discoverer
dbo:namedAfter
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1129349 (xsd:integer)
dbo:wikiPageLength
  • 15999 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190661507 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:fr
  • Reinhardt Kiehl (fr)
  • courbe elliptique supersingulière (fr)
  • Reinhardt Kiehl (fr)
  • courbe elliptique supersingulière (fr)
prop-fr:langue
  • de (fr)
  • en (fr)
  • de (fr)
  • en (fr)
prop-fr:trad
  • Supersingular elliptic curve (fr)
  • Supersingular elliptic curve (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies. La fonction zêta locale possède des coefficients dérivés des nombres Nk de points sur le corps à qk éléments. (fr)
  • En mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies. La fonction zêta locale possède des coefficients dérivés des nombres Nk de points sur le corps à qk éléments. (fr)
rdfs:label
  • Conjectures de Weil (fr)
  • Conjeturas de Weil (es)
  • Weil conjectures (en)
  • Weilförmodandena (sv)
  • Гипотезы Вейля (ru)
  • حدسيات فايل (ar)
  • ヴェイユ予想 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of