Property |
Value |
dbo:abstract
|
- En mathématiques et dans la théorie des nombres, une fonction zêta locale est une fonction génératrice pour le nombre de solutions d'un ensemble d'équations définies sur un corps fini F, dans les extensions de corps de F. L'analogie avec la fonction zêta de Riemann ζ vient de la considération de la dérivée logarithmique . Étant donné F, il existe, à un isomorphisme près, un seul corps tel que , pour k = 1,2, … Étant donné un ensemble d'équations polynomiales — ou une variété algébrique V — définie sur F, nous pouvons compter le nombre des solutions dans et créer la fonction génératrice . La définition correcte pour Z(t) est de rendre log Z égal à G donc de poser . Nous aurons Z(0) = 1 puisque G(0) = 0, et Z(t) est a priori une série formelle. (fr)
- En mathématiques et dans la théorie des nombres, une fonction zêta locale est une fonction génératrice pour le nombre de solutions d'un ensemble d'équations définies sur un corps fini F, dans les extensions de corps de F. L'analogie avec la fonction zêta de Riemann ζ vient de la considération de la dérivée logarithmique . Étant donné F, il existe, à un isomorphisme près, un seul corps tel que , pour k = 1,2, … Étant donné un ensemble d'équations polynomiales — ou une variété algébrique V — définie sur F, nous pouvons compter le nombre des solutions dans et créer la fonction génératrice . La définition correcte pour Z(t) est de rendre log Z égal à G donc de poser . Nous aurons Z(0) = 1 puisque G(0) = 0, et Z(t) est a priori une série formelle. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4464 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques et dans la théorie des nombres, une fonction zêta locale est une fonction génératrice pour le nombre de solutions d'un ensemble d'équations définies sur un corps fini F, dans les extensions de corps de F. L'analogie avec la fonction zêta de Riemann ζ vient de la considération de la dérivée logarithmique . Étant donné F, il existe, à un isomorphisme près, un seul corps tel que , pour k = 1,2, … Étant donné un ensemble d'équations polynomiales — ou une variété algébrique V — définie sur F, nous pouvons compter le nombre des solutions dans et créer la fonction génératrice . (fr)
- En mathématiques et dans la théorie des nombres, une fonction zêta locale est une fonction génératrice pour le nombre de solutions d'un ensemble d'équations définies sur un corps fini F, dans les extensions de corps de F. L'analogie avec la fonction zêta de Riemann ζ vient de la considération de la dérivée logarithmique . Étant donné F, il existe, à un isomorphisme près, un seul corps tel que , pour k = 1,2, … Étant donné un ensemble d'équations polynomiales — ou une variété algébrique V — définie sur F, nous pouvons compter le nombre des solutions dans et créer la fonction génératrice . (fr)
|
rdfs:label
|
- Fonction zêta locale (fr)
- Local zeta function (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |