ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。

PropertyValue
dbpedia-owl:abstract
  • Matematikte Bernoulli sayıları, sayı kuramıyla derin bir ilişkisi olan rasyonel sayı dizisidir. Sayı değerleri Riemann zeta işlevinin negatif tamsayılar için kazandığı değerlere yakındır.n 1'den farklı bir tek sayı olmak üzere Bn = 0 eşitliği geçerlidir. B1 ise 1/2 ya da -1/2 değerine sahiptir. Sıfırdan farklı birkaç Bernoulli sayısı aşağıda gösterilmiştir.Bernoulli sayıları Jakob Bernoulli tarafından, Japon matematikçi Seki Kōwa'yla hemen hemen aynı zamanda bulunmuştur. Seki'nin Katsuyo Sampo adlı kitabında yer alan bulgular ölümünün ardından 1712 yılında yayımlanmıştır. Bernoulli'ninkiler de yine ölümünden sonra Ars Conjectandi adlı kitap halinde 1713'te yayımlanmıştır.Bernoulli sayıları teğet ve hiperbolik teğet işlevlerinin Taylor dizisi açılımlarında, Euler–Maclaurin formülünde ve Riemann zeta işlevinin belli değerlerine ilişkin ifadelerde kullanılmaktadır.Ada Lovelace, analitik motora ilişkin 1842 tarihli notlarının G bölümünde Bernoulli sayılarını Babbage'ın makinesini kullanarak oluşturmaya yarayan bir algoritmadan söz etmektedir. Böylece, Bernoulli sayıları tarihin ilk bilgisayar programına da konu olmuştur.
  • ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。
  • 수론에서, 베르누이 수(영어: Bernoulli numbers)는 유리수 수열의 하나다.
  • Die Bernoulli-Zahlen oder bernoullischen Zahlen, 1, ±1/2, 1/6, 0, -1/30, ... sind eine Folge rationaler Zahlen, die in der Mathematik in verschiedenen Zusammenhängen auftreten: in den Entwicklungskoeffizienten trigonometrischer, hyperbolischer und anderer Funktionen, in der Euler-Maclaurin-Formel und in der Zahlentheorie in Zusammenhang mit der Riemannschen Zetafunktion. Die Benennung dieser Zahlen nach ihrem Entdecker Jakob Bernoulli wurde von Abraham de Moivre eingeführt.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 139178 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 30508 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 90 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110348989 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:id
  • p/b015640
prop-fr:nomUrl
  • BernoulliNumber
prop-fr:titre
  • Bernoulli Number
  • Bernoulli numbers
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • ベルヌーイ数 (ベルヌーイすう、Bernoulli number) は数論における基本的な係数を与える数列であり、もともと、連続する整数のべき乗和を定式化する際の展開係数として1713年にヤコブ・ベルヌーイが著書 Ars Conjectandi (推測術) にて導入したことからこの名称がついた。 ベルヌーイ数は、べき乗和の展開係数にとどまらず、級数展開の係数や剰余項、リーマンゼータ関数においても登場する。また、ベルヌーイ数はすべてが有理数である。
  • 수론에서, 베르누이 수(영어: Bernoulli numbers)는 유리수 수열의 하나다.
  • Die Bernoulli-Zahlen oder bernoullischen Zahlen, 1, ±1/2, 1/6, 0, -1/30, ... sind eine Folge rationaler Zahlen, die in der Mathematik in verschiedenen Zusammenhängen auftreten: in den Entwicklungskoeffizienten trigonometrischer, hyperbolischer und anderer Funktionen, in der Euler-Maclaurin-Formel und in der Zahlentheorie in Zusammenhang mit der Riemannschen Zetafunktion. Die Benennung dieser Zahlen nach ihrem Entdecker Jakob Bernoulli wurde von Abraham de Moivre eingeführt.
  • Matematikte Bernoulli sayıları, sayı kuramıyla derin bir ilişkisi olan rasyonel sayı dizisidir. Sayı değerleri Riemann zeta işlevinin negatif tamsayılar için kazandığı değerlere yakındır.n 1'den farklı bir tek sayı olmak üzere Bn = 0 eşitliği geçerlidir. B1 ise 1/2 ya da -1/2 değerine sahiptir. Sıfırdan farklı birkaç Bernoulli sayısı aşağıda gösterilmiştir.Bernoulli sayıları Jakob Bernoulli tarafından, Japon matematikçi Seki Kōwa'yla hemen hemen aynı zamanda bulunmuştur.
  • In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory. The values of the first few Bernoulli numbers are B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30.If the convention B1 = −1⁄2 is used, this sequence is also known as the first Bernoulli numbers (OEIS A027641 / OEIS A027642 in OEIS); with the convention B1 = +1⁄2 is known as the second Bernoulli numbers (OEIS A164555 / OEIS A027642).
rdfs:label
  • Nombre de Bernoulli
  • Bernoulli number
  • Bernoulli sayısı
  • Bernoulli-Zahl
  • Bernoulli-számok
  • Bernoulligetal
  • Liczby Bernoulliego
  • Numeri di Bernoulli
  • Número de Bernoulli
  • Números de Bernoulli
  • Числа Бернулли
  • ベルヌーイ数
  • 베르누이 수
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:renomméPour of
is foaf:primaryTopic of