En mathématiques, une série zêta rationnelle est la représentation d'un nombre réel arbitraire en termes d'une série constituée de nombres rationnels et de la fonction zêta de Riemann ou de la fonction zêta de Hurwitz. Plus précisément, pour un nombre réel donné x, la série zêta rationnelle pour x est donnée par où qn est un nombre rationnel, la valeur m reste fixée et ζ(s, m) est la fonction zêta de Hurwitz. Il n'est pas difficile de montrer que tout nombre réel x peut être développé de cette manière. Pour m entier, on a et et Adamchik et Srivastava donnent une série similaire :

Property Value
dbo:abstract
  • En mathématiques, une série zêta rationnelle est la représentation d'un nombre réel arbitraire en termes d'une série constituée de nombres rationnels et de la fonction zêta de Riemann ou de la fonction zêta de Hurwitz. Plus précisément, pour un nombre réel donné x, la série zêta rationnelle pour x est donnée par où qn est un nombre rationnel, la valeur m reste fixée et ζ(s, m) est la fonction zêta de Hurwitz. Il n'est pas difficile de montrer que tout nombre réel x peut être développé de cette manière. Pour m entier, on a Pour m = 2, beaucoup de nombres intéressants ont une expression simple sous forme de série zêta rationnelle : et où γ est la constante d'Euler-Mascheroni. Il existe aussi une série pour π : et qui est remarquable par sa convergence rapide. Cette dernière série se déduit de l'identité générale qui peut être transformée à partir de la fonction génératrice des nombres de Bernoulli Adamchik et Srivastava donnent une série similaire : (fr)
  • En mathématiques, une série zêta rationnelle est la représentation d'un nombre réel arbitraire en termes d'une série constituée de nombres rationnels et de la fonction zêta de Riemann ou de la fonction zêta de Hurwitz. Plus précisément, pour un nombre réel donné x, la série zêta rationnelle pour x est donnée par où qn est un nombre rationnel, la valeur m reste fixée et ζ(s, m) est la fonction zêta de Hurwitz. Il n'est pas difficile de montrer que tout nombre réel x peut être développé de cette manière. Pour m entier, on a Pour m = 2, beaucoup de nombres intéressants ont une expression simple sous forme de série zêta rationnelle : et où γ est la constante d'Euler-Mascheroni. Il existe aussi une série pour π : et qui est remarquable par sa convergence rapide. Cette dernière série se déduit de l'identité générale qui peut être transformée à partir de la fonction génératrice des nombres de Bernoulli Adamchik et Srivastava donnent une série similaire : (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1045971 (xsd:integer)
dbo:wikiPageLength
  • 5838 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 185275336 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:année
  • 1998 (xsd:integer)
prop-fr:lang
  • en (fr)
  • en (fr)
prop-fr:nom
  • Hari M. Srivastava (fr)
  • Victor S. Adamchik (fr)
  • Hari M. Srivastava (fr)
  • Victor S. Adamchik (fr)
prop-fr:p.
  • 131 (xsd:integer)
prop-fr:revue
  • Analysis (fr)
  • Analysis (fr)
prop-fr:titre
  • Some series of the zeta and related functions (fr)
  • Some series of the zeta and related functions (fr)
prop-fr:url
prop-fr:vol
  • 18 (xsd:integer)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, une série zêta rationnelle est la représentation d'un nombre réel arbitraire en termes d'une série constituée de nombres rationnels et de la fonction zêta de Riemann ou de la fonction zêta de Hurwitz. Plus précisément, pour un nombre réel donné x, la série zêta rationnelle pour x est donnée par où qn est un nombre rationnel, la valeur m reste fixée et ζ(s, m) est la fonction zêta de Hurwitz. Il n'est pas difficile de montrer que tout nombre réel x peut être développé de cette manière. Pour m entier, on a et et Adamchik et Srivastava donnent une série similaire : (fr)
  • En mathématiques, une série zêta rationnelle est la représentation d'un nombre réel arbitraire en termes d'une série constituée de nombres rationnels et de la fonction zêta de Riemann ou de la fonction zêta de Hurwitz. Plus précisément, pour un nombre réel donné x, la série zêta rationnelle pour x est donnée par où qn est un nombre rationnel, la valeur m reste fixée et ζ(s, m) est la fonction zêta de Hurwitz. Il n'est pas difficile de montrer que tout nombre réel x peut être développé de cette manière. Pour m entier, on a et et Adamchik et Srivastava donnent une série similaire : (fr)
rdfs:label
  • Série zêta rationnelle (fr)
  • Série zêta rationnelle (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of