Un quaternion est un type de nombre hypercomplexe. L'ensemble des quaternions, noté ℍ, constitue une extension de l'ensemble des nombres complexes, extension similaire à celle qui avait conduit de l'ensemble des nombres réels ℝ à celui des nombres complexes ℂ.Les quaternions furent mis en forme au XIXe siècle, par Hamilton qui cherchait à construire un ensemble de nombres ayant, dans l'espace, des propriétés analogues à celles que possèdent les nombres complexes dans le plan.

PropertyValue
dbpedia-owl:abstract
  • Un quaternion est un type de nombre hypercomplexe. L'ensemble des quaternions, noté ℍ, constitue une extension de l'ensemble des nombres complexes, extension similaire à celle qui avait conduit de l'ensemble des nombres réels ℝ à celui des nombres complexes ℂ.Les quaternions furent mis en forme au XIXe siècle, par Hamilton qui cherchait à construire un ensemble de nombres ayant, dans l'espace, des propriétés analogues à celles que possèdent les nombres complexes dans le plan. Il les présente comme des quadruplets de réels.L'ensemble des quaternions peut être muni d'une addition et d'une multiplication qui font de lui un des premiers exemples de corps gauche.La relation qui existe entre les quaternions et les rotations en dimension 3 fait de l'ensemble des quaternions un outil utile pour le traitement de l'espace comme en infographie ou en théorie de la commande.
  • Dalam matematika, Kuaternion merupakan perluasan dari bilangan-bilangan kompleks yang tidak komutatif, dan diterapkan dalam mekanika tiga dimensi. Kuaternion ditemukan oleh ahli matematika dan astronomi Inggris, William Rowan Hamilton, yang memperpanjang aritmatika kompleks nomor ke kuaternion.Segera setelah itu penemuan Hamilton, matematikawan Jerman Hermann Grassmann mulai menyelidiki vektor. Meskipun karakter abstrak, fisikawan Amerika JW Gibbs diakui dalam aljabar vektor sistem utilitas besar bagi fisikawan, seperti Hamilton mengakui kegunaan kuaternion. Pengaruh luas dari pendekatan abstrak yang dipimpin George Boole untuk menulis Hukum Thought (1854), perawatan aljabar dasar logika.
  • 数学における四元数(しげんすう、英: quaternion; クォータニオン)は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいて三次元での回転の計算でも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに整域となる。実は四元数の全体は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で ℍ)と書かれる。またこの代数を、クリフォード環の分類に従って Cℓ0,2(R) ≅ Cℓ03,0(R) というクリフォード環として定義することもできる。この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数の全体 R を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 C)だからである。従って、単位四元数は三次元球面 S3 上の群構造を選んだものとして考えることができて、群 Spin(3)を与える。これは SU(2) に同型、あるいはまた SO(3) の普遍被覆に同型である。
  • In mathematics, the quaternions are a number system that extends the complex numbers. They were first described by Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. A feature of quaternions is that multiplication of two quaternions is noncommutative. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space or equivalently as the quotient of two vectors.Quaternions find uses in both theoretical and applied mathematics, in particular for calculations involving three-dimensional rotations such as in three-dimensional computer graphics and computer vision. In practical applications, they can be used alongside other methods, such as Euler angles and rotation matrices, or as an alternative to them depending on the application.In modern mathematical language, quaternions form a four-dimensional associative normed division algebra over the real numbers, and thus also form a domain. In fact, the quaternions were the first noncommutative division algebra to be discovered. The algebra of quaternions is often denoted by H (for Hamilton), or in blackboard bold by (Unicode U+210D, ℍ). It can also be given by the Clifford algebra classifications Cℓ0,2(R) ≅ Cℓ03,0(R). The algebra H holds a special place in analysis since, according to the Frobenius theorem, it is one of only two finite-dimensional division rings containing the real numbers as a proper subring, the other being the complex numbers. These rings are also Euclidean Hurwitz algebras, of which quaternions are the largest associative algebra.The unit quaternions can therefore be thought of as a choice of a group structure on the 3-sphere S3 that gives the group Spin(3), which is isomorphic to SU(2) and also to the universal cover of SO(3).
  • Matematikte, dördeyler (ya da kvaterniyon, kuaternion, dördübir), karmaşık sayılar cisminin değişmesiz genişletmesidir. İlk defa İrlanda'lı matematikçi Sir William Rowan Hamilton tarafından 1843 yılında tanımlanmış, ve 3 boyutlu uzaydaki matematiğe uygulanmışlardır. İlk başta, kuaterniyonlar değişme kuralına (ab = ba) uymadıkları için sorunlu kabul edilmişlerdir. Her ne kadar pek çok uygulamada vektörler ve matrisler yerlerini almış olsa da, hala kuramsal ve uygulamalı matematikte kullanılmaktadırlar. Başlıca kullanım alanları, 3 boyutlu uzayda dönme hareketinin hesaplanmasıdır.Dördey cebiri genellikle H (Hamilton) ile gösterilir. Clifford cebiri sınıflandırması Cℓ0,2(R) = Cℓ03,0(R) olarak da gösterilirler. H cebirinin analizde önemli bir yeri vardır. Çünkü, Frobenius teoremi'ne göre, gerçel sayılar cismini althalka olarak içeren sonlu-boyutlu dört bölüm cebirinden bir tanesidir (diğerleri gerçel sayılar, karmaşık sayılar ve sekizeyler (octonions)).
  • V matematice jsou kvaterniony (z lat. quaternion, čtveřice) nekomutativní rozšíření oboru komplexních čísel. Lze je definovat jako uspořádané čtveřice reálných čísel se speciálně definovanými operacemi sčítání a násobení.Poprvé byly kvaterniony popsány Williamem Rowanem Hamiltonem v roce 1843. Nejdříve byly považovány za nevhodný a uměle vykonstruovaný objekt, jelikož porušovaly komutativní zákon ab = ba, postupně ale našly uplatnění jak v teoretické fyzice, tak v aplikované matematice (přestože mnohdy se jejich použití lze za jistou cenu vyhnout s pomocí vektorů).
  • A matematikában a kvaterniók a komplex számok négy dimenzióra történő nem kommutatív kiterjesztései. Először Sir William Rowan Hamilton ír matematikus, fizikus és csillagász vezette be 1843-ban (Hamilton-féle számoknak is nevezik).
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 63209 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 42032 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 109 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109299297 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wikibooks
  • Mathématiques_avec_Python_et_Ruby/Quaternions_et_octonions_en_Python
prop-fr:wikibooksTitre
  • Quaternions avec Python et Ruby
dcterms:subject
rdfs:comment
  • Un quaternion est un type de nombre hypercomplexe. L'ensemble des quaternions, noté ℍ, constitue une extension de l'ensemble des nombres complexes, extension similaire à celle qui avait conduit de l'ensemble des nombres réels ℝ à celui des nombres complexes ℂ.Les quaternions furent mis en forme au XIXe siècle, par Hamilton qui cherchait à construire un ensemble de nombres ayant, dans l'espace, des propriétés analogues à celles que possèdent les nombres complexes dans le plan.
  • 数学における四元数(しげんすう、英: quaternion; クォータニオン)は複素数を拡張した数体系である。四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、三次元空間の力学に応用された。四元数の特徴は、二つの四元数の積が非可換となることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいて三次元での回転の計算でも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。現代数学的な言い方をすれば、四元数の全体は実数体上四次元の結合的ノルム多元体を成し、またそれゆえに整域となる。実は四元数の全体は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で ℍ)と書かれる。またこの代数を、クリフォード環の分類に従って Cℓ0,2(R) ≅ Cℓ03,0(R) というクリフォード環として定義することもできる。この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数の全体 R を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 C)だからである。従って、単位四元数は三次元球面 S3 上の群構造を選んだものとして考えることができて、群 Spin(3)を与える。これは SU(2) に同型、あるいはまた SO(3) の普遍被覆に同型である。
  • A matematikában a kvaterniók a komplex számok négy dimenzióra történő nem kommutatív kiterjesztései. Először Sir William Rowan Hamilton ír matematikus, fizikus és csillagász vezette be 1843-ban (Hamilton-féle számoknak is nevezik).
  • In mathematics, the quaternions are a number system that extends the complex numbers. They were first described by Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. A feature of quaternions is that multiplication of two quaternions is noncommutative.
  • V matematice jsou kvaterniony (z lat. quaternion, čtveřice) nekomutativní rozšíření oboru komplexních čísel. Lze je definovat jako uspořádané čtveřice reálných čísel se speciálně definovanými operacemi sčítání a násobení.Poprvé byly kvaterniony popsány Williamem Rowanem Hamiltonem v roce 1843.
  • Dalam matematika, Kuaternion merupakan perluasan dari bilangan-bilangan kompleks yang tidak komutatif, dan diterapkan dalam mekanika tiga dimensi. Kuaternion ditemukan oleh ahli matematika dan astronomi Inggris, William Rowan Hamilton, yang memperpanjang aritmatika kompleks nomor ke kuaternion.Segera setelah itu penemuan Hamilton, matematikawan Jerman Hermann Grassmann mulai menyelidiki vektor.
  • Matematikte, dördeyler (ya da kvaterniyon, kuaternion, dördübir), karmaşık sayılar cisminin değişmesiz genişletmesidir. İlk defa İrlanda'lı matematikçi Sir William Rowan Hamilton tarafından 1843 yılında tanımlanmış, ve 3 boyutlu uzaydaki matematiğe uygulanmışlardır. İlk başta, kuaterniyonlar değişme kuralına (ab = ba) uymadıkları için sorunlu kabul edilmişlerdir.
rdfs:label
  • Quaternion
  • Cuaternión
  • Dördey
  • Koaternioi
  • Kuaternion
  • Kvaternion
  • Kvaterniók
  • Kwaterniony
  • Quaternion
  • Quaternion
  • Quaternion
  • Quaternione
  • Quaternió
  • Quaterniões
  • Кватернион
  • Кватернион
  • 四元数
  • 사원수
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of