En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée. Pour un entier n donné, les racines n-ièmes de l'unité sont situées sur le cercle unité du plan complexe et sont les sommets d'un polygone régulier à n côtés.

Property Value
dbo:abstract
  • En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée. Pour un entier n donné, les racines n-ièmes de l'unité sont situées sur le cercle unité du plan complexe et sont les sommets d'un polygone régulier à n côtés. Les racines n-ièmes de l'unité du corps des complexes forment un groupe multiplicatif isomorphe au groupe additif ℤ/nℤ. Les générateurs de ce groupe cyclique sont les racines primitives n-ièmes de l'unité. On parle aussi de racine de l'unité et de racine primitive de l'unité dans un corps, voire un anneau unitaire quelconque. Les racines de l'unité forment toujours un groupe, mais qui n'est pas forcément cyclique. (fr)
  • En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée. Pour un entier n donné, les racines n-ièmes de l'unité sont situées sur le cercle unité du plan complexe et sont les sommets d'un polygone régulier à n côtés. Les racines n-ièmes de l'unité du corps des complexes forment un groupe multiplicatif isomorphe au groupe additif ℤ/nℤ. Les générateurs de ce groupe cyclique sont les racines primitives n-ièmes de l'unité. On parle aussi de racine de l'unité et de racine primitive de l'unité dans un corps, voire un anneau unitaire quelconque. Les racines de l'unité forment toujours un groupe, mais qui n'est pas forcément cyclique. (fr)
dbo:wikiPageID
  • 136353 (xsd:integer)
dbo:wikiPageLength
  • 10849 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 189046955 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée. Pour un entier n donné, les racines n-ièmes de l'unité sont situées sur le cercle unité du plan complexe et sont les sommets d'un polygone régulier à n côtés. (fr)
  • En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée. Pour un entier n donné, les racines n-ièmes de l'unité sont situées sur le cercle unité du plan complexe et sont les sommets d'un polygone régulier à n côtés. (fr)
rdfs:label
  • 1の冪根 (ja)
  • Căn đơn vị (vi)
  • Einheitswurzel (de)
  • Enhetsrot (sv)
  • Racine de l'unité (fr)
  • Radice dell'unità (it)
  • Raíz de la unidad (es)
  • Корни из единицы (ru)
  • 1の冪根 (ja)
  • Căn đơn vị (vi)
  • Einheitswurzel (de)
  • Enhetsrot (sv)
  • Racine de l'unité (fr)
  • Radice dell'unità (it)
  • Raíz de la unidad (es)
  • Корни из единицы (ru)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of