Les notions de vecteur propre, de valeur propre, et de sous-espace propre s'appliquent à des endomorphismes (ou opérateurs linéaires), c'est-à-dire des applications linéaires d'un espace vectoriel dans lui-même. Elles sont intimement liées, et forment un pilier de la réduction des endomorphismes, partie de l'algèbre linéaire qui vise à décomposer de la manière la plus efficace possible l'espace en somme directe de sous-espaces stables.

PropertyValue
dbpedia-owl:abstract
  • Les notions de vecteur propre, de valeur propre, et de sous-espace propre s'appliquent à des endomorphismes (ou opérateurs linéaires), c'est-à-dire des applications linéaires d'un espace vectoriel dans lui-même. Elles sont intimement liées, et forment un pilier de la réduction des endomorphismes, partie de l'algèbre linéaire qui vise à décomposer de la manière la plus efficace possible l'espace en somme directe de sous-espaces stables.
dbpedia-owl:wikiPageID
  • 77830 (xsd:integer)
dbpedia-owl:wikiPageInterLanguageLink
dbpedia-owl:wikiPageLength
  • 13605 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 57 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108358632 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Les notions de vecteur propre, de valeur propre, et de sous-espace propre s'appliquent à des endomorphismes (ou opérateurs linéaires), c'est-à-dire des applications linéaires d'un espace vectoriel dans lui-même. Elles sont intimement liées, et forment un pilier de la réduction des endomorphismes, partie de l'algèbre linéaire qui vise à décomposer de la manière la plus efficace possible l'espace en somme directe de sous-espaces stables.
rdfs:label
  • Valeur propre (synthèse)
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of