Property |
Value |
dbo:abstract
|
- En mathématiques, et plus précisément en algèbre linéaire, un automorphisme orthogonal d'un espace préhilbertien E est un automorphisme f qui conserve le produit scalaire, c.-à-d. qui vérifie : . De façon équivalente, un endomorphisme f de E est un automorphisme orthogonal si et seulement si f est bijectif et admet pour adjoint, autrement dit si . Sur le corps des complexes, on l'appelle aussi automorphisme unitaire. Les automorphismes orthogonaux de E sont les isométries vectorielles surjectives de E dans E. En dimension finie, cette surjectivité est automatique. (fr)
- En mathématiques, et plus précisément en algèbre linéaire, un automorphisme orthogonal d'un espace préhilbertien E est un automorphisme f qui conserve le produit scalaire, c.-à-d. qui vérifie : . De façon équivalente, un endomorphisme f de E est un automorphisme orthogonal si et seulement si f est bijectif et admet pour adjoint, autrement dit si . Sur le corps des complexes, on l'appelle aussi automorphisme unitaire. Les automorphismes orthogonaux de E sont les isométries vectorielles surjectives de E dans E. En dimension finie, cette surjectivité est automatique. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5600 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, et plus précisément en algèbre linéaire, un automorphisme orthogonal d'un espace préhilbertien E est un automorphisme f qui conserve le produit scalaire, c.-à-d. qui vérifie : . De façon équivalente, un endomorphisme f de E est un automorphisme orthogonal si et seulement si f est bijectif et admet pour adjoint, autrement dit si . Sur le corps des complexes, on l'appelle aussi automorphisme unitaire. Les automorphismes orthogonaux de E sont les isométries vectorielles surjectives de E dans E. En dimension finie, cette surjectivité est automatique. (fr)
- En mathématiques, et plus précisément en algèbre linéaire, un automorphisme orthogonal d'un espace préhilbertien E est un automorphisme f qui conserve le produit scalaire, c.-à-d. qui vérifie : . De façon équivalente, un endomorphisme f de E est un automorphisme orthogonal si et seulement si f est bijectif et admet pour adjoint, autrement dit si . Sur le corps des complexes, on l'appelle aussi automorphisme unitaire. Les automorphismes orthogonaux de E sont les isométries vectorielles surjectives de E dans E. En dimension finie, cette surjectivité est automatique. (fr)
|
rdfs:label
|
- Automorphisme orthogonal (fr)
- Automorphisme orthogonal (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |