En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison.

Property Value
dbo:abstract
  • En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison. (fr)
  • En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison. (fr)
dbo:wikiPageID
  • 931545 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 8359 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 189739991 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison. (fr)
  • En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison. (fr)
rdfs:label
  • Chuỗi hội tụ (vi)
  • Convergència (sèries) (ca)
  • Konvergenzkriterium (de)
  • Serie convergente (es)
  • Série convergente (fr)
  • Série convergente (pt)
  • معايير تقارب سلسلة (ar)
  • 収束級数 (ja)
  • Chuỗi hội tụ (vi)
  • Convergència (sèries) (ca)
  • Konvergenzkriterium (de)
  • Serie convergente (es)
  • Série convergente (fr)
  • Série convergente (pt)
  • معايير تقارب سلسلة (ar)
  • 収束級数 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of