En mathématiques, l'inégalité de Cauchy-Schwarz (ICS), aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bouniakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire, l'analyse avec les séries et en intégration. Cette inégalité s'applique dans le cas d'un espace vectoriel sur le corps des nombres réels ou complexes muni d'un produit scalaire. Dans le cas complexe, le produit scalaire désigne une forme hermitienne définie positive. Son contexte général est donc celui d'un espace préhilbertien.

Property Value
dbo:abstract
  • En mathématiques, l'inégalité de Cauchy-Schwarz (ICS), aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bouniakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire, l'analyse avec les séries et en intégration. Cette inégalité s'applique dans le cas d'un espace vectoriel sur le corps des nombres réels ou complexes muni d'un produit scalaire. Dans le cas complexe, le produit scalaire désigne une forme hermitienne définie positive. Son contexte général est donc celui d'un espace préhilbertien. Cette inégalité possède de nombreuses applications, comme le fait d'établir l'inégalité triangulaire montrant que la racine carrée de la forme quadratique associée au produit scalaire est une norme, ou encore que le produit scalaire est continu. Elle fournit des justifications ou des éclairages dans des théories où le contexte préhilbertien n'est pas central. Elle doit son nom à Viktor Bouniakovski, Augustin Louis Cauchy et Hermann Amandus Schwarz. (fr)
  • En mathématiques, l'inégalité de Cauchy-Schwarz (ICS), aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bouniakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire, l'analyse avec les séries et en intégration. Cette inégalité s'applique dans le cas d'un espace vectoriel sur le corps des nombres réels ou complexes muni d'un produit scalaire. Dans le cas complexe, le produit scalaire désigne une forme hermitienne définie positive. Son contexte général est donc celui d'un espace préhilbertien. Cette inégalité possède de nombreuses applications, comme le fait d'établir l'inégalité triangulaire montrant que la racine carrée de la forme quadratique associée au produit scalaire est une norme, ou encore que le produit scalaire est continu. Elle fournit des justifications ou des éclairages dans des théories où le contexte préhilbertien n'est pas central. Elle doit son nom à Viktor Bouniakovski, Augustin Louis Cauchy et Hermann Amandus Schwarz. (fr)
dbo:discoverer
dbo:namedAfter
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19800 (xsd:integer)
dbo:wikiPageLength
  • 15440 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190044229 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, l'inégalité de Cauchy-Schwarz (ICS), aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bouniakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire, l'analyse avec les séries et en intégration. Cette inégalité s'applique dans le cas d'un espace vectoriel sur le corps des nombres réels ou complexes muni d'un produit scalaire. Dans le cas complexe, le produit scalaire désigne une forme hermitienne définie positive. Son contexte général est donc celui d'un espace préhilbertien. (fr)
  • En mathématiques, l'inégalité de Cauchy-Schwarz (ICS), aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bouniakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire, l'analyse avec les séries et en intégration. Cette inégalité s'applique dans le cas d'un espace vectoriel sur le corps des nombres réels ou complexes muni d'un produit scalaire. Dans le cas complexe, le produit scalaire désigne une forme hermitienne définie positive. Son contexte général est donc celui d'un espace préhilbertien. (fr)
rdfs:label
  • Bất đẳng thức Cauchy–Schwarz (vi)
  • Cauchy-Schwarzsche Ungleichung (de)
  • Cauchy–Schwarz olikhet (sv)
  • Inégalité de Cauchy-Schwarz (fr)
  • Nierówność Cauchy’ego-Schwarza (pl)
  • Неравенство Коши — Буняковского (ru)
  • コーシー=シュワルツの不等式 (ja)
  • Bất đẳng thức Cauchy–Schwarz (vi)
  • Cauchy-Schwarzsche Ungleichung (de)
  • Cauchy–Schwarz olikhet (sv)
  • Inégalité de Cauchy-Schwarz (fr)
  • Nierówność Cauchy’ego-Schwarza (pl)
  • Неравенство Коши — Буняковского (ru)
  • コーシー=シュワルツの不等式 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of