En arithmétique, un triplet pythagoricien est un triplet (x, y, z) d'entiers naturels non nuls vérifiant la relation de Pythagore : x2 + y2 = z2.

PropertyValue
dbpedia-owl:abstract
  • En arithmétique, un triplet pythagoricien est un triplet (x, y, z) d'entiers naturels non nuls vérifiant la relation de Pythagore : x2 + y2 = z2.
  • Em matemática, nomeadamente em teoria dos números, um terno pitagórico (ou trio pitagórico, ou ainda tripla pitagórica) é formado por três números naturais a, b e c tais que a²+b²=c². O nome vem do teorema de Pitágoras que afirma que se as medidas dos lados de um triângulo rectângulo são números inteiros, então são um terno pitagórico. Se (a,b,c) é um terno pitagórico, então (ka,kb,kc) também é um terno pitagórico, para qualquer número natural k. Um terno pitagórico primitivo é um terno pitagórico em que os três números são primos entre si. Os primeiros ternos pitagóricos primitivos são (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29)...
  • Una terna pitagórica consiste en una tupla de tres enteros positivos a, b, c que cumplen que a² + b² = c². El nombre deriva del teorema de Pitágoras, el cual plantea que en cualquier triángulo rectángulo, se cumple que x² + y² = z² (siendo x e y las longitudes enteras de sus catetos y z la de la hipotenusa). En sentido contrario también se cumple, o sea, cualquier terna pitagórica se puede asociar con las longitudes de dos catetos y una hipotenusa, formando un triángulo rectángulo.Las ternas pitagóricas suelen representarse como (a,b,c). Las ternas cuyos tres números son coprimos reciben el nombre de ternas pitagóricas primitivas. Las 16 primeras ternas pitagóricas primitivas, con c ≤ 100 son:
  • Een Pythagorees drietal (a, b, c) bestaat uit drie positieve gehele getallen a, b, c waarvoor geldt a2 + b2= c2. De naam komt van de stelling van Pythagoras, aangezien dergelijke getallen kunnen optreden als de zijden van een rechthoekige driehoek met c als lengte van de schuine zijde. De oppervlakte van een dergelijke rechthoekige driehoek is dan een congruent getal.Op kleitabletten uit de tijd van Hammurabi komen al Pythagorese drietallen voor. Op het tablet Plimpton 322 bijvoorbeeld staan 15 drietallen, waaronder (56,90,106), (119,120,169) en zelfs (12709,13500,18541). Ook in India kende men zulke getallen. In de Baudhayana-Sulbasutra uit de 6e eeuw v.Chr. staan vijf zulke drietallen.Er zijn oneindig veel Pythagorese drietallen. In de onderstaande tabel staan de eerste zes.Naast het drietal (3,4,5) vormen ook veelvouden hiervan, zoals (6,8,10) en (9,12,15) Pythagorese drietallen. Algemeen is met (a,b,c) ook (ka,kb,kc) voor elk positief geheel getal k een Pythagorees drietal.Een Pythagorees drietal (a,b,c) wordt primitief genoemd als a, b en c geen deler anders dan 1 gemeen hebben.
  • Pisagor üçlüsü, a2+b2=c2 eşitliğini sağlayan a,b,c tam sayılarına verilen addır. Örneğin (3,4,5) bir Pisagor üçlüsüdür. Eğer herhangi bir (a,b,c) Pisagor üçlüsüyse (ka,kb,kc) de bir Pisagor üçlüsüdür. Eğer (a,b,c) aralarında asalsa buna temel Pisagor üçlüsü denir.Pisagor üçlüleri bir dik üçgenin kenarlarını oluşturduğu için Pisagor teoremi'ne atıf olarak bu isimle adlandırılır. Ancak her dik üçgenin kenar uzunlukları Pisagor üçlüsü değildir. Örneğin (1,1,√2) üçgeninde √2 tam sayı olmadığı için bu bir Pisagor üçlüsü değildir.
  • En matemàtiques, especialment dins la teoria dels nombres, un tern pitagòric és format de tres nombres naturals a, b i c tals que a²+b²=c². Si (a,b,c) és un tern pitagòric, aleshores (ka,kb,kc) també és un tern pitagòric, per a qualsevol nombre natural k. En un tern pitagòric primitiu els tres nombres són primers entre si. Els primers terns pitagòrics primitius són (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29)...
  • A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime. A right triangle whose sides form a Pythagorean triple is called a Pythagorean triangle.The name is derived from the Pythagorean theorem, stating that every right triangle has side lengths satisfying the formula a2 + b2 = c2; thus, Pythagorean triples describe the three integer side lengths of a right triangle. However, right triangles with non-integer sides do not form Pythagorean triples. For instance, the triangle with sides a = b = 1 and c = √2 is right, but (1, 1, √2) is not a Pythagorean triple because √2 is not an integer. Moreover, 1 and √2 do not have an integer common multiple because √2 is irrational.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 43005 (xsd:integer)
dbpedia-owl:wikiPageInterLanguageLink
dbpedia-owl:wikiPageLength
  • 8721 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 25 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108470011 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En arithmétique, un triplet pythagoricien est un triplet (x, y, z) d'entiers naturels non nuls vérifiant la relation de Pythagore : x2 + y2 = z2.
  • A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime.
  • Een Pythagorees drietal (a, b, c) bestaat uit drie positieve gehele getallen a, b, c waarvoor geldt a2 + b2= c2. De naam komt van de stelling van Pythagoras, aangezien dergelijke getallen kunnen optreden als de zijden van een rechthoekige driehoek met c als lengte van de schuine zijde. De oppervlakte van een dergelijke rechthoekige driehoek is dan een congruent getal.Op kleitabletten uit de tijd van Hammurabi komen al Pythagorese drietallen voor.
  • Em matemática, nomeadamente em teoria dos números, um terno pitagórico (ou trio pitagórico, ou ainda tripla pitagórica) é formado por três números naturais a, b e c tais que a²+b²=c². O nome vem do teorema de Pitágoras que afirma que se as medidas dos lados de um triângulo rectângulo são números inteiros, então são um terno pitagórico. Se (a,b,c) é um terno pitagórico, então (ka,kb,kc) também é um terno pitagórico, para qualquer número natural k.
  • Pisagor üçlüsü, a2+b2=c2 eşitliğini sağlayan a,b,c tam sayılarına verilen addır. Örneğin (3,4,5) bir Pisagor üçlüsüdür. Eğer herhangi bir (a,b,c) Pisagor üçlüsüyse (ka,kb,kc) de bir Pisagor üçlüsüdür. Eğer (a,b,c) aralarında asalsa buna temel Pisagor üçlüsü denir.Pisagor üçlüleri bir dik üçgenin kenarlarını oluşturduğu için Pisagor teoremi'ne atıf olarak bu isimle adlandırılır. Ancak her dik üçgenin kenar uzunlukları Pisagor üçlüsü değildir.
  • En matemàtiques, especialment dins la teoria dels nombres, un tern pitagòric és format de tres nombres naturals a, b i c tals que a²+b²=c². Si (a,b,c) és un tern pitagòric, aleshores (ka,kb,kc) també és un tern pitagòric, per a qualsevol nombre natural k. En un tern pitagòric primitiu els tres nombres són primers entre si.
  • Una terna pitagórica consiste en una tupla de tres enteros positivos a, b, c que cumplen que a² + b² = c². El nombre deriva del teorema de Pitágoras, el cual plantea que en cualquier triángulo rectángulo, se cumple que x² + y² = z² (siendo x e y las longitudes enteras de sus catetos y z la de la hipotenusa).
rdfs:label
  • Triplet pythagoricien
  • Pisagor üçlüsü
  • Pitagoraszi számhármasok
  • Pythagorean triple
  • Pythagoreisches Tripel
  • Pythagorejská trojice
  • Pythagorese drietallen
  • Tern pitagòric
  • Terna pitagorica
  • Terna pitagórica
  • Terno pitagórico
  • Trójki pitagorejskie
  • Питагоров триъгълник
  • Пифагорова тройка
  • 피타고라스 수
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of