En mathématiques, la géométrie hyperbolique (nommée parfois géométrie de Lobatchevski) est une géométrie non euclidienne vérifiant les quatre premiers postulats de la géométrie euclidienne, mais pour laquelle le postulat euclidien des parallèles est remplacé par le postulat que « par un point extérieur à une droite passe plus d'une droite parallèle ».

PropertyValue
dbpedia-owl:abstract
  • En mathématiques, la géométrie hyperbolique (nommée parfois géométrie de Lobatchevski) est une géométrie non euclidienne vérifiant les quatre premiers postulats de la géométrie euclidienne, mais pour laquelle le postulat euclidien des parallèles est remplacé par le postulat que « par un point extérieur à une droite passe plus d'une droite parallèle ». On démontre qu'alors il y a une infinité de droites parallèles.En géométrie hyperbolique, le théorème de Pythagore n'est plus valable et la somme des angles d'un triangle n'est plus égale à 180°. Une droite est toujours définie comme la ligne de plus court chemin joignant deux points sur une surface.Lobatchevski, Klein et Poincaré ont créé des modèles de géométrie non euclidienne dans lesquelles on peut tracer une infinité de parallèles à une droite donnée et passant par un même point. On peut citer, en deux dimensions : le disque de Poincaré, le demi-plan de Poincaré…
  • Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.Евклидова аксиома о параллельных (точнее, одно из эквивалентных ей утверждений) гласит:В геометрии Лобачевского, вместо неё принимается следующая аксиома:Широко распространено заблуждение, что в геометрии Лобачевского параллельные прямые пересекаются.Геометрия Лобачевского имеет обширные применения как в математике, так и в физике.Историческое и философское её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии, математики и науки вообще.
  • La geometría hiperbólica (o lobachevskiana) es un modelo de geometría que satisface solo los cuatro primeros postulados de la geometría euclidiana. Aunque es similar en muchos aspectos y muchos de los teoremas de la geometría euclidiana siguen siendo válidos en geometría hiperbólica, no se satisface el quinto postulado de Euclides sobre las paralelas. Al igual que la geometría euclidiana y la geometría elíptica, la geometría hiperbólica es un modelo de curvatura constante: La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero. La geometría hiperbólica satisface solo los cuatro primeros postulados de Euclides y tiene curvatura negativa. La geometría elíptica satisface solo los cuatro primeros postulados de Euclides y tiene curvatura positiva.
  • Die hyperbolische Geometrie als Beispiel für eine nichteuklidische Geometrie erhält man, wenn man zu den Axiomen der absoluten Geometrie anstelle des Parallelenaxioms, das die euklidischen Geometrien kennzeichnet, das diesem widersprechende „hyperbolische Axiom“ hinzunimmt. Das hyperbolische Axiom besagt, dass es zu einer Geraden g und einem Punkt P (der nicht auf g liegt) nicht wie in der euklidischen Geometrie nur genau eine, sondern mindestens zwei Geraden (h und i) gibt, die durch P gehen und zu g parallel sind. Dass zwei Geraden „parallel“ zueinander sind, bedeutet hier aber lediglich, dass sie in derselben Ebene liegen und keine gemeinsamen Punkte haben, nicht dass sie überall den gleichen Abstand haben (h und i haben nur einen gemeinsamen Punkt P).Es lässt sich zeigen, dass es dann zu einer beliebigen Geraden g durch jeden Punkt außerhalb von g unendlich viele Nichtschneidende („Parallelen“) gibt, die in der durch den Punkt und die Gerade bestimmten Ebene liegen. Zwei davon sind in einer Grenzlage und heißen grenzparallel (auch: horoparallel) zur Geraden, während die restlichen Geraden überparallel (auch: hyperparallel) genannt werden.
  • 双曲幾何学(そうきょくきかがく、英語: hyperbolic geometry)またはボヤイ・ロバチェフスキー幾何学 (英: Bolyai-Lobachevskian geometry) とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユーグリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。
  • A hiperbolikus geometria egy nemeuklideszi geometria, amiben az euklideszi párhuzamossági axiómát a hiperbolikus axióma helyettesíti. Ez azt mondja ki, hogy egy egyeneshez egy rajta kívül fekvő ponton át több párhuzamos húzható. Ennek több meglepő következménye is van, például két metsző egyeneshez van egy harmadik, ami egyiket sem metszi.A párhuzamosság terminológiája nem egységes. Ami az egyikben párhuzamos, az a másikban elpattanó, de használják a párhuzamos szót az összes nem metsző egyenesre is. Ezért mindig meg kell ismerni az adott helyen alkalmazott terminológiát. Itt az elpattanó, az ultrapárhuzamos és a párhuzamos szavakat használjuk majd. A párhuzamos az egy síkban levő nem metsző egyeneseket, az elpattanó a határhelyezetben párhuzamos, és az ultrapárhuzamos a nem elpattanó, de párhuzamos egyeneseket jelöli.A hiperbolikus sík negatív görbülete miatt nem ágyazható be az euklideszi térbe, de modellezhető már az euklideszi síkban is. Több modellje is létezik, mint a Klein-modell, a hiperboloidmodell, és a konform modellek. A modellek azt mutatják, hogy ha az euklideszi axiómarendszer ellentmondásmentes, akkor a hiperbolikus axiómarendszer is az. Az euklideszi geometriát is modellezték a hiperbolikusban, így a két axiómarendszer ellentmondásmentessége ekvivalens.
  • Geometria hiperboliczna (zwana także geometrią siodła, geometrią Łobaczewskiego lub geometrią Bolyaia-Łobaczewskiego) – jedna z geometrii nieeuklidesowych.
  • V matematice je hyperbolická geometrie (nebo také Lobačevského geometrie) neeukleidovskou geometrií, což znamená, že nesplňuje pátý Eukleidův postulát (o rovnoběžkách). Ten říká, že v dvourozměrném prostoru pro přímku l a bod P ležící mimo ni existuje právě jedna přímka, která bodem P prochází a zároveň neprotíná l; neboli je rovnoběžná s l. V hyperbolické geometrii takové přímky existují alespoň dvě, takže tento postulát zde neplatí. Hyperbolická geometrie se dá zkonstruovat axiomaticky, ale je také možné udělat její model zadáním jisté metriky na hladké varietě. Existence hyperbolické geometrie implikuje nezávislost postulátu o rovnoběžkách na ostatních Eukleidových postulátech. Lokálně se dá hyperbolická geometrie modelovat na části plochy, která má zápornou Gaussovu křivost, např. jednodílného hyperboloidu nebo hyperbolického paraboloidu.Charakteristickou vlastností hyperbolické geometrie je, že součet vnitřních úhlů každého trojúhelníku v této geometrii je menší než 180°. Součet vnitřních úhlů trojúhelníka může být libovolně malý.
  • La geometria iperbolica, anche chiamata geometria della sella o geometria di Lobachevskij, è una geometria non euclidea ottenuta rimpiazzando il postulato delle parallele con il cosiddetto postulato iperbolico.La geometria iperbolica è stata inizialmente studiata da Saccheri nel secolo XVIII, che tuttavia l'ha creduta inconsistente, e più tardi da Bolyai, Gauss e Lobachevsky, con il nome di geometria astrale. A 150 anni dalla sua nascita, la geometria iperbolica è ancora un argomento centrale della matematica, ravvivato alla fine degli anni settanta dalle scoperte di William Thurston.
  • La geometria hiperbòlica (o Lobatxevskiana ) és un model de geometria que satisfà només els quatre primers postulats de la geometria euclidiana. Encara que és similar en molts aspectes i molts dels teoremes de la geometria euclidiana continuen sent vàlids en geometria hiperbòlica, no se satisfà el cinquè postulat d'Euclides sobre les paral·leles. Igual que la geometria euclidiana i la geometria el·líptica, la geometria hiperbòlica és un model de curvatura constant: La geometria euclidiana satisfà els cinc postulats d'Euclides i té curvatura zero. La geometria hiperbòlica satisfà només els quatre primers postulats d'Euclides i té curvatura negativa. La geometria el·líptica satisfà només els quatre primers postulats d'Euclides i té curvatura positiva.
  • In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry, meaning that the parallel postulate of Euclidean geometry is replaced. The parallel postulate in Euclidean geometry is equivalent to the statement that, in two-dimensional space, for any given line R and point P not on R, there is exactly one line through P that does not intersect R; i.e., that is parallel to R. In hyperbolic geometry there are at least two distinct lines through P which do not intersect R, so the parallel postulate is false. Models have been constructed within Euclidean geometry that obey the axioms of hyperbolic geometry, thus proving that the parallel postulate is independent of the other postulates of Euclid.Because there is no precise hyperbolic analogue to Euclidean parallel lines, the hyperbolic use of parallel and related terms varies among writers. In this article, the two limiting lines are called asymptotic and lines sharing a common perpendicular are called ultraparallel; the simple word parallel may apply to both.A characteristic property of hyperbolic geometry is that the angles of a triangle add to less than a straight angle, or 180°. In the limit, as the side lengths approach infinity, there are even ideal hyperbolic triangles in which all three angles are 0°.
  • Hiperbolik geometri Öklid geometrisinden bir belitle ayrılır. Öklit'in paralellik belitinin tersini doğru olarak kabul eden geometride bir doğrunun dışındaki bir noktadan birden çok (sonsuz) tane paralel doğru geçebilir. Ayrıca bir üçgenin iç açıları toplamı her zaman iki tane dik açıdan küçüktür.
  • 쌍곡기하학이란 원을 쌍곡선의 형태로 나누었을때를 말하며, 곡선이 세개 이상일 경우 도형이 성립된다. 삼각형이 쌍곡선으로 이루어 졌다고 가정했을경우, 세 삼각형의 위치는 평면에서는 두 초점간의 거리의 각 중점에서 좌표가 형성되며 쌍곡선의 기울기에 따라 삼각형의 각이 결정된다. 세삼각형의 각은 180도 이하이다.구의 형태에서도 동일하게 형성된다.
  • Em matemática, geometria hiperbólica (também chamado geometria Lobachevskian ou geometria Bolyai - Lobachevskian ) é uma geometria não-euclidiana , o que significa que o postulado das paralelas da geometria euclidiana é substituída . O postulado das paralelas na geometria euclidiana é equivalente à afirmação de que , no espaço bidimensional , para qualquer R linha e o ponto P não em R , não é exatamente uma linha através de P que não se cruzam R , ou seja , que é paralela à R. na geometria hiperbólica , existem pelo menos duas linhas distintas através de P que não se cruzam R, de modo que o postulado das paralelas é falso. Os modelos foram construídos dentro de geometria euclidiana que obedecer os axiomas da geometria hiperbólica , provando assim que o postulado das paralelas é independente dos outros postulados de Euclides (assumindo que os outros postulados são de fato consistente) .Porque não há nenhuma analogia hiperbólica preciso para linhas paralelas euclidianas , o uso hiperbólico de termos paralelas e relacionadas varia entre os escritores. Neste artigo, as duas linhas limitantes são chamados assintótica e linhas compartilham de uma perpendicular comum são chamados ultra-paralela , a palavra simples paralelo pode aplicar-se tanto .Uma propriedade característica da geometria hiperbólica é que os ângulos de um triângulo adicionar menos do que um ângulo reto . No limite , como os vértices de ir para o infinito , existem triângulos hiperbólicas mesmo ideais em que todos os três ângulos são 0º.
  • In de wiskunde is de hyperbolische meetkunde, of Bolyai-Lobatsjevski meetkunde, een niet-euclidische meetkunde. In de hyperbolische meetkunde vervangt men het parallellenpostulaat uit de Euclidische meetkunde. Het parallellenpostulaat is in de Euclidische meetkunde equivalent met de bewering dat, in de twee dimensionale ruimte, voor elke gegeven lijn l en een punt P, dat niet op l ligt, er precies één lijn door P loopt, die l niet kruist, dat wil zeggen evenwijdig aan l loopt. In de hyperbolische meetkunde zijn er ten minste twee verschillende lijnen door P die l niet snijden. In de hyperbolische meetkunde wordt dus niet meer aan het parallellenpostulaat voldaan. Binnen de Euclidische meetkunde zijn ruimten gedefiniëerd, die aan de axioma's van de hyperbolische meetkunde voldoen, waarmee werd bewezen dat het parallellenpostulaat onafhankelijk is van de andere postulaten van Euclides.De hyperbolische meetkunde is rond 1830 ontdekt. Grondleggers van de hyperbolische meetkunde waren János Bolyai (1802–1860), die wordt beschouwd als één van de grondleggers van de niet-euclidische meetkunde, Carl Friedrich Gauss (1777-1855) en Nikolaj Lobatsjevski (1792-1856), ook vooral bekend vanwege zijn prestaties op het gebied van de niet-euclidische meetkunde.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 94446 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 12177 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 43 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 104410830 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:collection
  • Universitext
prop-fr:isbn
  • 978 (xsd:integer)
prop-fr:lang
  • en
prop-fr:lienAuteur
  • John Stillwell
prop-fr:lienÉditeur
  • Springer Verlag
prop-fr:nom
  • Stillwell
prop-fr:prénom
  • John
prop-fr:titre
  • Geometry of Surfaces
prop-fr:url
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • 1992 (xsd:integer)
dcterms:subject
rdfs:comment
  • En mathématiques, la géométrie hyperbolique (nommée parfois géométrie de Lobatchevski) est une géométrie non euclidienne vérifiant les quatre premiers postulats de la géométrie euclidienne, mais pour laquelle le postulat euclidien des parallèles est remplacé par le postulat que « par un point extérieur à une droite passe plus d'une droite parallèle ».
  • Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.Евклидова аксиома о параллельных (точнее, одно из эквивалентных ей утверждений) гласит:В геометрии Лобачевского, вместо неё принимается следующая аксиома:Широко распространено заблуждение, что в геометрии Лобачевского параллельные прямые пересекаются.Геометрия Лобачевского имеет обширные применения как в математике, так и в физике.Историческое и философское её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии, математики и науки вообще.
  • 双曲幾何学(そうきょくきかがく、英語: hyperbolic geometry)またはボヤイ・ロバチェフスキー幾何学 (英: Bolyai-Lobachevskian geometry) とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユーグリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。
  • Geometria hiperboliczna (zwana także geometrią siodła, geometrią Łobaczewskiego lub geometrią Bolyaia-Łobaczewskiego) – jedna z geometrii nieeuklidesowych.
  • Hiperbolik geometri Öklid geometrisinden bir belitle ayrılır. Öklit'in paralellik belitinin tersini doğru olarak kabul eden geometride bir doğrunun dışındaki bir noktadan birden çok (sonsuz) tane paralel doğru geçebilir. Ayrıca bir üçgenin iç açıları toplamı her zaman iki tane dik açıdan küçüktür.
  • 쌍곡기하학이란 원을 쌍곡선의 형태로 나누었을때를 말하며, 곡선이 세개 이상일 경우 도형이 성립된다. 삼각형이 쌍곡선으로 이루어 졌다고 가정했을경우, 세 삼각형의 위치는 평면에서는 두 초점간의 거리의 각 중점에서 좌표가 형성되며 쌍곡선의 기울기에 따라 삼각형의 각이 결정된다. 세삼각형의 각은 180도 이하이다.구의 형태에서도 동일하게 형성된다.
  • La geometría hiperbólica (o lobachevskiana) es un modelo de geometría que satisface solo los cuatro primeros postulados de la geometría euclidiana. Aunque es similar en muchos aspectos y muchos de los teoremas de la geometría euclidiana siguen siendo válidos en geometría hiperbólica, no se satisface el quinto postulado de Euclides sobre las paralelas.
  • V matematice je hyperbolická geometrie (nebo také Lobačevského geometrie) neeukleidovskou geometrií, což znamená, že nesplňuje pátý Eukleidův postulát (o rovnoběžkách). Ten říká, že v dvourozměrném prostoru pro přímku l a bod P ležící mimo ni existuje právě jedna přímka, která bodem P prochází a zároveň neprotíná l; neboli je rovnoběžná s l. V hyperbolické geometrii takové přímky existují alespoň dvě, takže tento postulát zde neplatí.
  • La geometria iperbolica, anche chiamata geometria della sella o geometria di Lobachevskij, è una geometria non euclidea ottenuta rimpiazzando il postulato delle parallele con il cosiddetto postulato iperbolico.La geometria iperbolica è stata inizialmente studiata da Saccheri nel secolo XVIII, che tuttavia l'ha creduta inconsistente, e più tardi da Bolyai, Gauss e Lobachevsky, con il nome di geometria astrale.
  • Em matemática, geometria hiperbólica (também chamado geometria Lobachevskian ou geometria Bolyai - Lobachevskian ) é uma geometria não-euclidiana , o que significa que o postulado das paralelas da geometria euclidiana é substituída . O postulado das paralelas na geometria euclidiana é equivalente à afirmação de que , no espaço bidimensional , para qualquer R linha e o ponto P não em R , não é exatamente uma linha através de P que não se cruzam R , ou seja , que é paralela à R.
  • A hiperbolikus geometria egy nemeuklideszi geometria, amiben az euklideszi párhuzamossági axiómát a hiperbolikus axióma helyettesíti. Ez azt mondja ki, hogy egy egyeneshez egy rajta kívül fekvő ponton át több párhuzamos húzható. Ennek több meglepő következménye is van, például két metsző egyeneshez van egy harmadik, ami egyiket sem metszi.A párhuzamosság terminológiája nem egységes.
  • In de wiskunde is de hyperbolische meetkunde, of Bolyai-Lobatsjevski meetkunde, een niet-euclidische meetkunde. In de hyperbolische meetkunde vervangt men het parallellenpostulaat uit de Euclidische meetkunde. Het parallellenpostulaat is in de Euclidische meetkunde equivalent met de bewering dat, in de twee dimensionale ruimte, voor elke gegeven lijn l en een punt P, dat niet op l ligt, er precies één lijn door P loopt, die l niet kruist, dat wil zeggen evenwijdig aan l loopt.
  • In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry, meaning that the parallel postulate of Euclidean geometry is replaced. The parallel postulate in Euclidean geometry is equivalent to the statement that, in two-dimensional space, for any given line R and point P not on R, there is exactly one line through P that does not intersect R; i.e., that is parallel to R.
  • La geometria hiperbòlica (o Lobatxevskiana ) és un model de geometria que satisfà només els quatre primers postulats de la geometria euclidiana. Encara que és similar en molts aspectes i molts dels teoremes de la geometria euclidiana continuen sent vàlids en geometria hiperbòlica, no se satisfà el cinquè postulat d'Euclides sobre les paral·leles.
  • Die hyperbolische Geometrie als Beispiel für eine nichteuklidische Geometrie erhält man, wenn man zu den Axiomen der absoluten Geometrie anstelle des Parallelenaxioms, das die euklidischen Geometrien kennzeichnet, das diesem widersprechende „hyperbolische Axiom“ hinzunimmt.
rdfs:label
  • Géométrie hyperbolique
  • Geometria hiperboliczna
  • Geometria hiperbòlica
  • Geometria hiperbólica
  • Geometria iperbolica
  • Geometría hiperbólica
  • Hiperbolik geometri
  • Hiperbolikus geometria
  • Hyperbolic geometry
  • Hyperbolická geometrie
  • Hyperbolische Geometrie
  • Hyperbolische meetkunde
  • Геометрия Лобачевского
  • 双曲幾何学
  • 쌍곡 기하학
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of