En mathématiques, l'intégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock).

Property Value
dbo:abstract
  • En mathématiques, l'intégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock). Dans la pratique, on est amené à effectuer une étude de convergence d'intégrale impropre : * lorsqu'on intègre jusqu'à une borne infinie ; * lorsqu'on intègre jusqu'à une borne en laquelle la fonction n'admet pas de limite finie ; * lorsqu'on englobe un point de non-définition dans l'intervalle d'intégration. Dans chaque cas, on évaluera l'intégrale définie comme une fonction d'une des deux bornes, et on prendra la limite de la fonction obtenue lorsque l'argument tend vers la valeur de la borne. L'intégrale impropre partage un certain nombre de propriétés élémentaires avec l'intégrale définie. Elle ne permet pas d'écrire des résultats d'interversion limite-intégrale avec les théorèmes d'interversion de convergence uniforme. Par contre, il existe un théorème d'interversion limite-intégrale adapté aux intégrales impropres : c'est le théorème de convergence dominée. (fr)
  • En mathématiques, l'intégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock). Dans la pratique, on est amené à effectuer une étude de convergence d'intégrale impropre : * lorsqu'on intègre jusqu'à une borne infinie ; * lorsqu'on intègre jusqu'à une borne en laquelle la fonction n'admet pas de limite finie ; * lorsqu'on englobe un point de non-définition dans l'intervalle d'intégration. Dans chaque cas, on évaluera l'intégrale définie comme une fonction d'une des deux bornes, et on prendra la limite de la fonction obtenue lorsque l'argument tend vers la valeur de la borne. L'intégrale impropre partage un certain nombre de propriétés élémentaires avec l'intégrale définie. Elle ne permet pas d'écrire des résultats d'interversion limite-intégrale avec les théorèmes d'interversion de convergence uniforme. Par contre, il existe un théorème d'interversion limite-intégrale adapté aux intégrales impropres : c'est le théorème de convergence dominée. (fr)
dbo:wikiPageID
  • 417664 (xsd:integer)
dbo:wikiPageLength
  • 14352 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 182273163 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, l'intégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock). (fr)
  • En mathématiques, l'intégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock). (fr)
rdfs:label
  • Całka niewłaściwa (pl)
  • Generaliserad integral (sv)
  • Integrale improprio (it)
  • Intégrale impropre (fr)
  • Tích phân suy rộng (vi)
  • Uneigentliches Integral (de)
  • Несобственный интеграл (ru)
  • 広義積分 (ja)
  • Całka niewłaściwa (pl)
  • Generaliserad integral (sv)
  • Integrale improprio (it)
  • Intégrale impropre (fr)
  • Tích phân suy rộng (vi)
  • Uneigentliches Integral (de)
  • Несобственный интеграл (ru)
  • 広義積分 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of