En analyse, les méthodes de quadrature de Clenshaw–Curtis et de quadrature de Fejér sont des méthodes d'intégration numérique s'appuyant sur le développement de la fonction à intégrer en polynômes de Tchebychev. De façon équivalente, ils emploient un changement de variable x = cos θ et utilisent une approximation de la transformée en cosinus discrète pour un développement en cosinus. En plus d'avoir des résultats de convergence rapide comparables à la quadrature de Gauss, la quadrature de Clenshaw–Curtis mène naturellement à des (où des points se retrouvent dans plusieurs ordres de précision), ce qui devient intéressant pour la et les méthodes de quadrature multidimensionnelles.

Property Value
dbo:abstract
  • En analyse, les méthodes de quadrature de Clenshaw–Curtis et de quadrature de Fejér sont des méthodes d'intégration numérique s'appuyant sur le développement de la fonction à intégrer en polynômes de Tchebychev. De façon équivalente, ils emploient un changement de variable x = cos θ et utilisent une approximation de la transformée en cosinus discrète pour un développement en cosinus. En plus d'avoir des résultats de convergence rapide comparables à la quadrature de Gauss, la quadrature de Clenshaw–Curtis mène naturellement à des (où des points se retrouvent dans plusieurs ordres de précision), ce qui devient intéressant pour la et les méthodes de quadrature multidimensionnelles. En résumé, la fonction f(x) à intégrer est évaluée aux N extrema ou racines d'un polynôme de Tchebychev et ces valeurs sont utilisées pour construire une approximation polynomiale de la fonction. Ce polynôme est ensuite intégré de façon exacte. En pratique, les poids d'intégration en chaque nœud sont pré-calculés, en un temps en O(N log N) par des algorithmes de transformée de Fourier rapide adaptés à la TCD. (fr)
  • En analyse, les méthodes de quadrature de Clenshaw–Curtis et de quadrature de Fejér sont des méthodes d'intégration numérique s'appuyant sur le développement de la fonction à intégrer en polynômes de Tchebychev. De façon équivalente, ils emploient un changement de variable x = cos θ et utilisent une approximation de la transformée en cosinus discrète pour un développement en cosinus. En plus d'avoir des résultats de convergence rapide comparables à la quadrature de Gauss, la quadrature de Clenshaw–Curtis mène naturellement à des (où des points se retrouvent dans plusieurs ordres de précision), ce qui devient intéressant pour la et les méthodes de quadrature multidimensionnelles. En résumé, la fonction f(x) à intégrer est évaluée aux N extrema ou racines d'un polynôme de Tchebychev et ces valeurs sont utilisées pour construire une approximation polynomiale de la fonction. Ce polynôme est ensuite intégré de façon exacte. En pratique, les poids d'intégration en chaque nœud sont pré-calculés, en un temps en O(N log N) par des algorithmes de transformée de Fourier rapide adaptés à la TCD. (fr)
dbo:wikiPageID
  • 13421596 (xsd:integer)
dbo:wikiPageLength
  • 25940 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190174338 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En analyse, les méthodes de quadrature de Clenshaw–Curtis et de quadrature de Fejér sont des méthodes d'intégration numérique s'appuyant sur le développement de la fonction à intégrer en polynômes de Tchebychev. De façon équivalente, ils emploient un changement de variable x = cos θ et utilisent une approximation de la transformée en cosinus discrète pour un développement en cosinus. En plus d'avoir des résultats de convergence rapide comparables à la quadrature de Gauss, la quadrature de Clenshaw–Curtis mène naturellement à des (où des points se retrouvent dans plusieurs ordres de précision), ce qui devient intéressant pour la et les méthodes de quadrature multidimensionnelles. (fr)
  • En analyse, les méthodes de quadrature de Clenshaw–Curtis et de quadrature de Fejér sont des méthodes d'intégration numérique s'appuyant sur le développement de la fonction à intégrer en polynômes de Tchebychev. De façon équivalente, ils emploient un changement de variable x = cos θ et utilisent une approximation de la transformée en cosinus discrète pour un développement en cosinus. En plus d'avoir des résultats de convergence rapide comparables à la quadrature de Gauss, la quadrature de Clenshaw–Curtis mène naturellement à des (où des points se retrouvent dans plusieurs ordres de précision), ce qui devient intéressant pour la et les méthodes de quadrature multidimensionnelles. (fr)
rdfs:label
  • Méthode de quadrature de Clenshaw-Curtis (fr)
  • Quadratura de Clenshaw-Curtis (ca)
  • Méthode de quadrature de Clenshaw-Curtis (fr)
  • Quadratura de Clenshaw-Curtis (ca)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of