Matematiğin gerçel çözümleme olarak bilinen alanında Riemann integrali bir aralıkta tanımlı işlevlerin integralini hesaplamaya yönelik ilk kesin tanımdır. Adını Bernhard Riemann'dan alan kavram her ne kadar kuramsal amaçlar için kullanışlı değilse de çok kolay bir biçimde tanımlanabilmektedir.

PropertyValue
dbpedia-owl:abstract
  • Matematiğin gerçel çözümleme olarak bilinen alanında Riemann integrali bir aralıkta tanımlı işlevlerin integralini hesaplamaya yönelik ilk kesin tanımdır. Adını Bernhard Riemann'dan alan kavram her ne kadar kuramsal amaçlar için kullanışlı değilse de çok kolay bir biçimde tanımlanabilmektedir.
  • No ramo da matemática conhecido como análise real, a integral de Riemann, criada por Bernhard Riemann, foi a primeira definição rigorosa de uma integral de uma função em um intervalo. Enquanto a integral de Riemann é inadequada para muitos propósitos teóricos, ela é uma das definições mais fáceis de integral. Algumas deficiências destas técnicas podem ser remediadas pela integral de Riemann-Stieltjes, e a maioria delas desaparece na integral Lebesgue.
  • Интегра́л Ри́мана — одно из важнейших понятий математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
  • A matematikai analízisben az érintőprobléma mellett a másik jelentős témakör a kvadratúra problémája, vagyis a függvénygörbe alatti terület meghatározása, azaz az integrálás (régen: egészlés).Szemléletesen az integrálás feladata azt meghatározni, hogy adott [a,b] zárt intervallumon értelmezett, pozitív értékeket felvevő függvény esetén mekkora területű síktartományt határol a függvény görbéje, az x tengely, valamint az x = a és az x = b egyenes. Valójában ez a másik irányban igaz: Az integrálás segítségével definiálható az említett görbével határolt terület nagysága.Folytonos függvények integráljára először Cauchy adott minden esetben ellenőrizhető eredményt szolgáltató definíciót. Riemann kérdése az volt, hogy milyen – nem feltétlenül folytonos – függvények esetén értelmes még integrálról beszélni. Ő alkotott először általános definíciót az integrálható függvények osztályának értelmezésére. Azokat a függvényeket, amelyek ennek a definíciónak megfelelnek, Riemann-integrálhatónak nevezzük.
  • In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration.The Riemann integral is unsuitable for many theoretical purposes. Some of the technical deficiencies in Riemann integration can be remedied with the Riemann–Stieltjes integral, and most disappear with the Lebesgue integral.
  • In analisi matematica, l'integrale di Riemann è un operatore integrale tra i più utilizzati in matematica. Formulato da Bernhard Riemann, si tratta della prima definizione rigorosa di integrale di una funzione su un intervallo ad essere stata formulata.
  • 리만 적분은 적분 개념을 수학적으로 정의하는 방법 중 하나로, 베른하르트 리만이 정의하였다.
  • Binnen de wiskunde, speciaal in de analyse, is Riemannintegratie een methode die werd ontwikkeld door de Duitse wiskundige Bernhard Riemann, om op een interval de oppervlakte onder de grafiek van een functie te berekenen. Die oppervlakte is de (Riemann)integraal van de beschouwde functie over dat interval.De Riemannintegraal is voor veel theoretische doeleinden ongeschikt, en voor een groot aantal functies en praktische toepassingen kan de integraal eenvoudig bepaald worden met behulp van de hoofdstelling van de integraalrekening of door numerieke integratie.Sommige van de technische onvolkomenheden van Riemannintegratie worden weggenomen door de Riemann-Stieltjes-integraal, en bijna alle door de Lebesgue-integraal.
  • Integral Riemann, dalam cabang matematika yang dikenal sebagai analisis riil, merupakan definisi ketat pertama integral sebuah fungsi dalam sebuah selang. Meskipun integral Riemann tidak cocok untuk banyak kegunaan teoretis, integral ini merupakan salah satu integral yang paling mudah untuk didefinisikan. Sebagian kekurangan teknis ini dapat diperbaiki oleh integral Riemann-Stieltjes, dan kebanyakan tidak ada lagi pada integral Lebesgue.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 14560 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 12447 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 53 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 104488752 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Matematiğin gerçel çözümleme olarak bilinen alanında Riemann integrali bir aralıkta tanımlı işlevlerin integralini hesaplamaya yönelik ilk kesin tanımdır. Adını Bernhard Riemann'dan alan kavram her ne kadar kuramsal amaçlar için kullanışlı değilse de çok kolay bir biçimde tanımlanabilmektedir.
  • No ramo da matemática conhecido como análise real, a integral de Riemann, criada por Bernhard Riemann, foi a primeira definição rigorosa de uma integral de uma função em um intervalo. Enquanto a integral de Riemann é inadequada para muitos propósitos teóricos, ela é uma das definições mais fáceis de integral. Algumas deficiências destas técnicas podem ser remediadas pela integral de Riemann-Stieltjes, e a maioria delas desaparece na integral Lebesgue.
  • Интегра́л Ри́мана — одно из важнейших понятий математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
  • In analisi matematica, l'integrale di Riemann è un operatore integrale tra i più utilizzati in matematica. Formulato da Bernhard Riemann, si tratta della prima definizione rigorosa di integrale di una funzione su un intervallo ad essere stata formulata.
  • 리만 적분은 적분 개념을 수학적으로 정의하는 방법 중 하나로, 베른하르트 리만이 정의하였다.
  • Integral Riemann, dalam cabang matematika yang dikenal sebagai analisis riil, merupakan definisi ketat pertama integral sebuah fungsi dalam sebuah selang. Meskipun integral Riemann tidak cocok untuk banyak kegunaan teoretis, integral ini merupakan salah satu integral yang paling mudah untuk didefinisikan. Sebagian kekurangan teknis ini dapat diperbaiki oleh integral Riemann-Stieltjes, dan kebanyakan tidak ada lagi pada integral Lebesgue.
  • A matematikai analízisben az érintőprobléma mellett a másik jelentős témakör a kvadratúra problémája, vagyis a függvénygörbe alatti terület meghatározása, azaz az integrálás (régen: egészlés).Szemléletesen az integrálás feladata azt meghatározni, hogy adott [a,b] zárt intervallumon értelmezett, pozitív értékeket felvevő függvény esetén mekkora területű síktartományt határol a függvény görbéje, az x tengely, valamint az x = a és az x = b egyenes.
  • In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration.The Riemann integral is unsuitable for many theoretical purposes.
  • Binnen de wiskunde, speciaal in de analyse, is Riemannintegratie een methode die werd ontwikkeld door de Duitse wiskundige Bernhard Riemann, om op een interval de oppervlakte onder de grafiek van een functie te berekenen.
rdfs:label
  • Intégrale de Riemann
  • Całka Riemanna
  • Integración de Riemann
  • Integral Riemann
  • Integral de Riemann
  • Integral de Riemann
  • Integrale di Riemann
  • Riemann integral
  • Riemann integrali
  • Riemann-integrál
  • Riemannen integral
  • Riemannintegratie
  • Riemannsches Integral
  • Riemannův integrál
  • Интеграл Римана
  • リーマン積分
  • 리만 적분
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of