dbo:abstract
|
- Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide). Généralement, on considère des pavages « par translations », c’est-à-dire que deux mêmes carreaux du pavage sont toujours déductibles l’un de l’autre par une translation (à l’exclusion des rotations ou symétries). On peut aussi paver un plan non euclidien : voir . (fr)
- Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide). Généralement, on considère des pavages « par translations », c’est-à-dire que deux mêmes carreaux du pavage sont toujours déductibles l’un de l’autre par une translation (à l’exclusion des rotations ou symétries). On peut aussi paver un plan non euclidien : voir . (fr)
|
rdfs:comment
|
- Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide). Généralement, on considère des pavages « par translations », c’est-à-dire que deux mêmes carreaux du pavage sont toujours déductibles l’un de l’autre par une translation (à l’exclusion des rotations ou symétries). On peut aussi paver un plan non euclidien : voir . (fr)
- Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide). Généralement, on considère des pavages « par translations », c’est-à-dire que deux mêmes carreaux du pavage sont toujours déductibles l’un de l’autre par une translation (à l’exclusion des rotations ou symétries). On peut aussi paver un plan non euclidien : voir . (fr)
|