On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première dans l'histoire. La seconde est venue ensuite, grâce aux travaux pionniers de Ludwig Boltzmann. Avec la physique statistique, dont elle est désormais une partie, la thermodynamique est l'une des grandes théories sur lesquelles se fonde la compréhension actuelle de la matière.

PropertyValue
dbpedia-owl:abstract
  • On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première dans l'histoire. La seconde est venue ensuite, grâce aux travaux pionniers de Ludwig Boltzmann. Avec la physique statistique, dont elle est désormais une partie, la thermodynamique est l'une des grandes théories sur lesquelles se fonde la compréhension actuelle de la matière.
  • Termodinamika (grezieraz τερμον "beroa" eta δυναμις "dinamika") beroa eta lana, eta sistema makroskopikoetan hauek duten eragina aztertzen dituen fisikaren arloa da, sistema osatzen duten partikulen mugimenduak estatistikoki analizatuz.
  • Die Thermodynamik (von altgriechisch θερμός thermós „warm“ sowie δύναμις dýnamis „Kraft“), auch als Wärmelehre bezeichnet, ist ein Teilgebiet der klassischen Physik.Sie beschäftigt sich mit der Möglichkeit, durch Umverteilen von Energie zwischen ihren verschiedenen Erscheinungsformen Arbeit zu verrichten.Die Grundlagen der Thermodynamik wurden aus dem Studium der Volumen-, Druck-, Temperaturverhältnisse bei Dampfmaschinen entwickelt.Man unterscheidet zwischen offenen, geschlossenen und abgeschlossenen (isolierten) thermodynamischen Systemen. Bei einem offenen System fließt – im Gegensatz zum geschlossenen – Materie über die Systemgrenze, abgeschlossene Systeme sind auch energiedicht. Nach dem Energieerhaltungssatz bleibt darin die Summe aller Energieformen (thermische, chemische, Federspannung, Magnetisierung usw.) konstant.Die Thermodynamik bringt die Prozessgrößen Wärme und Arbeit an der Systemgrenze mit den Zustandsgrößen in Zusammenhang, welche den Zustand des Systems beschreiben. Dabei wird zwischen intensiven Zustandsgrößen (beispielsweise Temperatur T, Druck p, Konzentration n und chemisches Potential μ) und extensiven Zustandsgrößen (beispielsweise innerer Energie U, Entropie S, Volumen V und Teilchenzahl N) unterschieden.Auf der Basis von vier fundamentalen Hauptsätzen sowie materialspezifischen, empirischen Zustandsgleichungen zwischen den Zustandsgrößen (s. z. B. Gasgesetz) erlaubt die Thermodynamik durch die Aufstellung von Gleichgewichtsbedingungen Aussagen darüber, welche Änderungen an einem System möglich sind (beispielsweise welche chemischen Reaktionen oder Phasenübergänge ablaufen können, aber nicht wie) und welche Werte der intensiven Zustandsgrößen dafür erforderlich sind. Sie dient zur Berechnung von frei werdender Wärmeenergie, von Druck-, Temperatur- oder Volumenänderungen, und hat daher große Bedeutung für das Verständnis und die Planung von Prozessen in Chemieanlagen, bei Wärmekraftmaschinen sowie in der Heizungs- und Klimatechnik.Die Thermodynamik macht aber keine Aussagen darüber, wie schnell die Prozesse ablaufen (Kinetik), sodass es Bestrebungen gab, den Begriff Thermodynamik durch Thermostatik zu ersetzen.Durch die statistische Mechanik nach James Clerk Maxwell und Ludwig Boltzmann können viele Aspekte der Thermodynamik anhand mikroskopischer Theorien bestätigt werden. In ihrer gesamten Darstellung behält sie allerdings weiterhin den ausgezeichneten Status einer eigenständigen physikalischen Theorie. Ihre Anwendbarkeit muss jedoch auf geeignete Systeme eingeschränkt werden, nämlich solche, die sich aus genügend vielen Einzelsystemen, also meist Teilchen, zusammensetzen.
  • Thermodynamica (van het Griekse thermos, warm, en dynamis, vermogen) is het onderdeel van de natuurkunde dat de interacties bestudeert tussen grote verzamelingen van deeltjes op een macroscopisch niveau. De thermodynamica vindt zijn oorsprong in de praktische behoefte de efficiëntie van stoommachines te verbeteren.
  • Termodinamik, (Yunancada: thermos:ısı ve dynamic:enerji). Bazı Türkçe kaynaklarda ısıl devingi olarak da geçer. Enerji, ısı, iş, entropi ve ekserji gibi fiziksel kavramlarla ilgilenen bilim dalı. Termodinamik yasalarının istatistiksel mekanikten türetilebileceği gösterilmiştir.Termodinamik her ne kadar sistemlerin madde ve/veya enerji alış-verişiyle ilgilense de, bu işlemlerin hızıyla ilgilenmez. Bundan dolayı aslında termodinamik denilirken, denge termodinamiği kastedilir. Bu yüzden termodinamiğin ana kavramlarından biri "quasi-statik" (yarı-durağan) adı verilen, idealize edilmiş "sonsuz yavaşlıkta" olaylardır. Zamana bağlı termodinamik olaylarla, denge halinde olmayan termodinamik ilgilenir.Termodinamik yasaları çok genel bir geçerliliğe sahiptirler ve karşılıklı etkileşimlerin ayrıntılarına veya incelenen sistemin özelliklerine bağlı olarak değişmezler. Yani bir sistemin sadece madde veya enerji giriş-çıkışı bilinse dahi bu sisteme uygulanabilirler.
  • Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Она изучает макроскопические системы, состоящие из огромного числа частиц —термодинамические системы. Процессы, происходящие в таких системах, описываются макроскопическими величинами, такими как давление или температура, которые не применимы к отдельным молекулам и атомам. Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако обоснование этих постулатов и их связь со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, двигатели, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.
  • Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work. It defines macroscopic variables, such as internal energy, entropy, and pressure, that partly describe a body of matter or radiation. It states that the behavior of those variables is subject to general constraints, that are common to all materials, not the peculiar properties of particular materials. These general constraints are expressed in the four laws of thermodynamics. Thermodynamics describes the bulk behavior of the body, not the microscopic behaviors of the very large numbers of its microscopic constituents, such as molecules. Its laws are explained by statistical mechanics, in terms of the microscopic constituents.Thermodynamics applies to a wide variety of topics in science and engineering.Historically, thermodynamics developed out of a desire to increase the efficiency and power output of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that the efficiency of heat engines was the key that could help France win the Napoleonic Wars. Irish-born British physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854:"Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency."Initially, thermodynamics, as applied to heat engines, was concerned with the thermal properties of their 'working materials' such as steam, in an effort to increase the efficiency and power output of engines. Thermodynamics later expanded to the study of energy transfers in chemical processes, for example to the investigation, published in 1840, of the heats of chemical reactions by Germain Hess, which was not originally explicitly concerned with the relation between energy exchanges by heat and work. From this evolved the study of Chemical thermodynamics and the role of entropy in chemical reactions.
  • Termodynamika je obor fyziky, který se zabývá procesy a vlastnostmi látek a polí spojených s teplem a tepelnými jevy; vychází přitom z obecných principů přeměny energie, které jsou popsány čtyřmi termodynamickými zákony (z historických důvodů číslovány nultý až třetí). Termodynamika se dále dělí na studium rovnovážných a nerovnovážných procesů. Historicky byl vývoj termodynamiky veden touhou zvýšit efektivitu prvních parních strojů, čímž se zabývala klíčová práce Úvahy o hybné síle ohně francouzského fyzika Sadiho Carnota, často nazývaného otcem termodynamiky. O další rozvoj termodynamiky se zasadila formulace prvního a druhého zákona termodynamiky, na nichž se podíleli především William Thomson, pozdější lord Kelvin, Rudolf Clausius a William Rankine. Samotný termín termodynamika je prvně doložen v roce 1849 v práci lorda Kelvina.
  • A termodinâmica (do grego θερμη, therme, significa "calor" e δυναμις, dynamis, significa "potência") é o ramo da física que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume - e de outras grandezas termodinâmicas fundamentais em casos menos gerais - em sistemas físicos em escala macroscópica. Grosso modo, calor significa "energia" em trânsito, e dinâmica se relaciona com "movimento". Por isso, em essência, a termodinâmica estuda o movimento da energia e como a energia cria movimento. Historicamente, a termodinâmica se desenvolveu pela necessidade de aumentar-se a eficiência das primeiras máquinas a vapor, sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia.
  • Термодинамиката (от гръцки: θέρμη, топлина и δύναμις, сила; буквално може да се преведе като топлосила) е клон на природните науки (основно физиката и химията), занимаващ се с топлинните процеси, протичащи в телата следствие промяната на температура, обем и налягане и връзката с други форми на енергия и работа. Описва средностатистическите свойства на материалните тела, наречени термодинамични системи и излъчването, и обяснява как те са свързани и с какви закони се променят с времето. Термодинамиката не описва микроскопичните съставни части на материята и нейните закони могат да бъдат получени от статистическата механика.Термодинамиката може да бъде приложена към широка гама от теми в науката и техниката, като двигатели, фазови преходи, химични реакции, транспортни явления и дори черни дупки. Резултатите на термодинамиката са от съществено значение за други области на физиката, а също и химията, инженерната химия, космическото инженерство, машиностроенето, клетъчната биология, биомедицинското инженерство, материалознанието и дори икономиката.Голяма част от емпиричното съдържание на термодинамиката се съдържа в нейните четири закона - постулати, които постановяват, че енергия може да се обменя между системите във формата на работа или топлина. Те също така постулират съществуването на физична величина, наречена ентропия, която е напълно определена за всяка изолирана система в термодинамично равновесие. Общо казано, термодинамиката описва как отделни системи реагират на промени в околната среда. Първоначално термодинамиката е разработена поради желанието да се повиши ефективността на първите парни двигатели, особено след работата на френския физик Никола Леонард Сади Карно, който вярва, че ефективността на топлинните двигатели е ключът, който може да помогне на Франция да спечели Наполеоновите войни. Шотландският физик лорд Келвин е първият, който формулира кратко определение на термодинамиката през 1854 г.Термодинамиката се дели на класическа, статистическа и химическа. Статистическата термодинамика е създадена за механична основа на термодинамиката и е един от първите раздели на статистическата физика.
  • La termodinámica (del griego θερμo, termo, que significa «calor» y δύναμις, dínamis, que significa «fuerza») es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental. Los estados de equilibrio son estudiados y definidos por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema, o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden ser tratadas por medio de la termodinámica.La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio, definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas». Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica -todas las leyes y variables termodinámicas-, se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden ser descritas consistentemente empleando la teoría termodinámica. Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc), el sistema tenderá a evolucionar de un estado de equilibrio a otro; comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico. El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que sólo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía, que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro. Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motores, cambios de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros.
  • A termodinamika (ma már ritkán használt magyar nevén hőtan) a fizika energiaátalakulásokkal foglalkozó tudományterülete.Egy magára hagyott termodinamikai rendszerben az intenzív állapotjelzők eloszlása homogénné válik, vagyis a rendszer egyensúlyi állapotba kerül. Az egyensúlyi állapottal a termosztatika foglalkozik. Minden pontjában ugyanakkora nyomás, hőmérséklet stb. lesz. Termodinamikai elveken (is) alapszik pl.: időjárás-előrejelzés, robbanómotorok, repülőgép-hajtóművek, hűtőszekrény, kuktafazék, kémény. Néhány fogalom, mely kapcsolódik a termodinamikához: tömeg, tömegáram, hőátadás, munka, hő, belső energia, nyomás, fázis, entrópia, entalpia, fajhő, ideális gáz, Carnot-körfolyamat.
  • 열역학(熱力學)은 에너지, 열, 일, 엔트로피와 과정의 자발성을 다루는 물리학의 분야다. 통계 역학과 밀접한 관계를 가지며, 그로부터 수많은 열역학 관계식을 유도할 수 있다.물질이나 에너지를 서로 교환하는 여러 물리계 사이의 열역학적 과정을 다룰 때, 고전 열역학은 그 과정이 완료되는 시간이나 그 과정이 얼마나 빨리 일어나는지에 대해서는 관심을 갖지 않는다. "열역학"이라는 용어 대신 평형 열역학이란 용어를 사용하며, 준정적 과정(quasi-static process)이라는 개념이 매우 중요하다. 준정적 과정은 "매우 천천히 변하여" 각 순간마다 "평형상태"로 간주할 수 있는 이상적인 과정을 말한다. 비평형 열역학(non-equilibrium thermodynamics)에서 시간에 따라 변화하는 열역학적 과정을 연구한다.열역학 법칙은 매우 일반적인 법칙으로, 관찰하는 대상이나 물질 사이의 상호작용에 상관없이 항상 성립하는 법칙이다. 즉, 관찰하고자 하는 계와 이를 둘러싼 환경 사이에 에너지와 물질 교환이 평형을 이룬다는 사실만 확인되면 항상 적용할 수 있다. 이것에 대한 예로 20세기 초 아인슈타인이 예측한 자발 방출(spontaneous emission)과 현재 연구중인 블랙홀의 열역학이 있다.
  • La termodinamica è quella branca della fisica e della chimica (chimica fisica) che descrive le trasformazioni subite da un sistema in seguito a processi che coinvolgono la trasformazione di massa ed energia.La termodinamica classica si basa sul concetto di sistema macroscopico, ovvero una porzione di massa fisicamente o concettualmente separata dall'ambiente esterno, che spesso per comodità si assume non perturbato dallo scambio di energia con il sistema. Lo stato di un sistema macroscopico che si trova in condizione di equilibrio è specificato da grandezze dette variabili termodinamiche o funzioni di stato come la temperatura, la pressione, il volume, la composizione chimica.Tuttavia esiste una branca della termodinamica, denominata termodinamica del non equilibrio che studia i processi termodinamici caratterizzati dal mancato raggiungimento di condizioni di equilibrio stabile.
  • 熱力学(ねつりきがく、英: thermodynamics)は、物理学の一分野で、熱や圧力現象を物質の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。なお、熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 7479 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 29213 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 114 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 108222255 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:commons
  • Thermodynamics
prop-fr:wikiPageUsesTemplate
prop-fr:wikibooks
  • Thermodynamique
prop-fr:wikiversity
  • Département:Thermodynamique
prop-fr:wiktionary
  • thermodynamique
dcterms:subject
rdf:type
rdfs:comment
  • On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première dans l'histoire. La seconde est venue ensuite, grâce aux travaux pionniers de Ludwig Boltzmann. Avec la physique statistique, dont elle est désormais une partie, la thermodynamique est l'une des grandes théories sur lesquelles se fonde la compréhension actuelle de la matière.
  • Termodinamika (grezieraz τερμον "beroa" eta δυναμις "dinamika") beroa eta lana, eta sistema makroskopikoetan hauek duten eragina aztertzen dituen fisikaren arloa da, sistema osatzen duten partikulen mugimenduak estatistikoki analizatuz.
  • Thermodynamica (van het Griekse thermos, warm, en dynamis, vermogen) is het onderdeel van de natuurkunde dat de interacties bestudeert tussen grote verzamelingen van deeltjes op een macroscopisch niveau. De thermodynamica vindt zijn oorsprong in de praktische behoefte de efficiëntie van stoommachines te verbeteren.
  • 熱力学(ねつりきがく、英: thermodynamics)は、物理学の一分野で、熱や圧力現象を物質の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。なお、熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。
  • Die Thermodynamik (von altgriechisch θερμός thermós „warm“ sowie δύναμις dýnamis „Kraft“), auch als Wärmelehre bezeichnet, ist ein Teilgebiet der klassischen Physik.Sie beschäftigt sich mit der Möglichkeit, durch Umverteilen von Energie zwischen ihren verschiedenen Erscheinungsformen Arbeit zu verrichten.Die Grundlagen der Thermodynamik wurden aus dem Studium der Volumen-, Druck-, Temperaturverhältnisse bei Dampfmaschinen entwickelt.Man unterscheidet zwischen offenen, geschlossenen und abgeschlossenen (isolierten) thermodynamischen Systemen.
  • La termodinámica (del griego θερμo, termo, que significa «calor» y δύναμις, dínamis, que significa «fuerza») es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.
  • La termodinamica è quella branca della fisica e della chimica (chimica fisica) che descrive le trasformazioni subite da un sistema in seguito a processi che coinvolgono la trasformazione di massa ed energia.La termodinamica classica si basa sul concetto di sistema macroscopico, ovvero una porzione di massa fisicamente o concettualmente separata dall'ambiente esterno, che spesso per comodità si assume non perturbato dallo scambio di energia con il sistema.
  • A termodinamika (ma már ritkán használt magyar nevén hőtan) a fizika energiaátalakulásokkal foglalkozó tudományterülete.Egy magára hagyott termodinamikai rendszerben az intenzív állapotjelzők eloszlása homogénné válik, vagyis a rendszer egyensúlyi állapotba kerül. Az egyensúlyi állapottal a termosztatika foglalkozik. Minden pontjában ugyanakkora nyomás, hőmérséklet stb. lesz.
  • A termodinâmica (do grego θερμη, therme, significa "calor" e δυναμις, dynamis, significa "potência") é o ramo da física que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume - e de outras grandezas termodinâmicas fundamentais em casos menos gerais - em sistemas físicos em escala macroscópica. Grosso modo, calor significa "energia" em trânsito, e dinâmica se relaciona com "movimento".
  • Termodynamika – nauka o energii, dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych układów.
  • Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Она изучает макроскопические системы, состоящие из огромного числа частиц —термодинамические системы.
  • Termodynamika je obor fyziky, který se zabývá procesy a vlastnostmi látek a polí spojených s teplem a tepelnými jevy; vychází přitom z obecných principů přeměny energie, které jsou popsány čtyřmi termodynamickými zákony (z historických důvodů číslovány nultý až třetí). Termodynamika se dále dělí na studium rovnovážných a nerovnovážných procesů.
  • 열역학(熱力學)은 에너지, 열, 일, 엔트로피와 과정의 자발성을 다루는 물리학의 분야다. 통계 역학과 밀접한 관계를 가지며, 그로부터 수많은 열역학 관계식을 유도할 수 있다.물질이나 에너지를 서로 교환하는 여러 물리계 사이의 열역학적 과정을 다룰 때, 고전 열역학은 그 과정이 완료되는 시간이나 그 과정이 얼마나 빨리 일어나는지에 대해서는 관심을 갖지 않는다. "열역학"이라는 용어 대신 평형 열역학이란 용어를 사용하며, 준정적 과정(quasi-static process)이라는 개념이 매우 중요하다. 준정적 과정은 "매우 천천히 변하여" 각 순간마다 "평형상태"로 간주할 수 있는 이상적인 과정을 말한다. 비평형 열역학(non-equilibrium thermodynamics)에서 시간에 따라 변화하는 열역학적 과정을 연구한다.열역학 법칙은 매우 일반적인 법칙으로, 관찰하는 대상이나 물질 사이의 상호작용에 상관없이 항상 성립하는 법칙이다.
  • Termodinamik, (Yunancada: thermos:ısı ve dynamic:enerji). Bazı Türkçe kaynaklarda ısıl devingi olarak da geçer. Enerji, ısı, iş, entropi ve ekserji gibi fiziksel kavramlarla ilgilenen bilim dalı. Termodinamik yasalarının istatistiksel mekanikten türetilebileceği gösterilmiştir.Termodinamik her ne kadar sistemlerin madde ve/veya enerji alış-verişiyle ilgilense de, bu işlemlerin hızıyla ilgilenmez. Bundan dolayı aslında termodinamik denilirken, denge termodinamiği kastedilir.
  • Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work. It defines macroscopic variables, such as internal energy, entropy, and pressure, that partly describe a body of matter or radiation. It states that the behavior of those variables is subject to general constraints, that are common to all materials, not the peculiar properties of particular materials. These general constraints are expressed in the four laws of thermodynamics.
  • Термодинамиката (от гръцки: θέρμη, топлина и δύναμις, сила; буквално може да се преведе като топлосила) е клон на природните науки (основно физиката и химията), занимаващ се с топлинните процеси, протичащи в телата следствие промяната на температура, обем и налягане и връзката с други форми на енергия и работа. Описва средностатистическите свойства на материалните тела, наречени термодинамични системи и излъчването, и обяснява как те са свързани и с какви закони се променят с времето.
rdfs:label
  • Thermodynamique
  • Termodinamica
  • Termodinamik
  • Termodinamika
  • Termodinamika
  • Termodinamika
  • Termodinàmica
  • Termodinámica
  • Termodinâmica
  • Termodynamika
  • Termodynamika
  • Thermodynamica
  • Thermodynamics
  • Thermodynamik
  • Термодинамика
  • Термодинамика
  • 熱力学
  • 열역학
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:domain of
is dbpedia-owl:industry of
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:champs of
is prop-fr:renomméPour of
is skos:subject of
is foaf:primaryTopic of