Dans un espace vectoriel, une base canonique est une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de ℝn, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. La propriété spécifique de ces bases canoniques est que pour tout vecteur v de l'espace, les coordonnées de v dans la base canonique sont données par les composantes mêmes (coefficients) qui constituent v.

PropertyValue
dbpedia-owl:abstract
  • Dans un espace vectoriel, une base canonique est une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de ℝn, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. La propriété spécifique de ces bases canoniques est que pour tout vecteur v de l'espace, les coordonnées de v dans la base canonique sont données par les composantes mêmes (coefficients) qui constituent v.
  • Als Standardbasis, natürliche Basis, Einheitsbasis oder kanonische Basis bezeichnet man im mathematischen Teilgebiet der Linearen Algebra eine spezielle Basis, die in gewissen Vektorräumen bereits aufgrund ihrer Konstruktion unter allen möglichen Basen ausgezeichnet ist.
  • In mathematics, the standard basis (also called natural basis or canonical basis) for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system. For example, the standard basis for the Euclidean plane is formed by vectorsand the standard basis for three-dimensional space is formed by vectorsHere the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction. There are several common notations for these vectors, including {ex, ey, ez}, {e1, e2, e3}, {i, j, k}, and {x, y, z}. These vectors are sometimes written with a hat to emphasize their status as unit vectors. Each of these vectors is sometimes referred to as the versor of the corresponding Cartesian axis.These vectors are a basis in the sense that any other vector can be expressed uniquely as a linear combination of these. For example, every vector v in three-dimensional space can be written uniquely asthe scalars vx, vy, vz being the scalar components of the vector v.In -dimensional Euclidean space, the standard basis consists of n distinct vectorswhere ei denotes the vector with a 1 in the th coordinate and 0's elsewhere.
dbpedia-owl:wikiPageID
  • 840251 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 3532 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 18 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109134675 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Dans un espace vectoriel, une base canonique est une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de ℝn, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. La propriété spécifique de ces bases canoniques est que pour tout vecteur v de l'espace, les coordonnées de v dans la base canonique sont données par les composantes mêmes (coefficients) qui constituent v.
  • Als Standardbasis, natürliche Basis, Einheitsbasis oder kanonische Basis bezeichnet man im mathematischen Teilgebiet der Linearen Algebra eine spezielle Basis, die in gewissen Vektorräumen bereits aufgrund ihrer Konstruktion unter allen möglichen Basen ausgezeichnet ist.
  • In mathematics, the standard basis (also called natural basis or canonical basis) for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system. For example, the standard basis for the Euclidean plane is formed by vectorsand the standard basis for three-dimensional space is formed by vectorsHere the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
rdfs:label
  • Base canonique
  • Base canònica
  • Base canónica
  • Base canônica
  • Baza standardowa
  • Standaardbasis
  • Standard basis
  • Standardbasis
  • 標準基底
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of