En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée 2F1(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge). Selon les valeurs prises par les paramètres, cette fonction correspond à de nombreuses fonctions usuelles ou spéciales, notamment des polynômes orthogonaux. La fonction hypergéométrique est en fait un cas particulier de la fonction hypergéométrique généralisée pFq(a1,...,ap ; b1,...,bq ; z).

Property Value
dbo:abstract
  • En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée 2F1(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge). Selon les valeurs prises par les paramètres, cette fonction correspond à de nombreuses fonctions usuelles ou spéciales, notamment des polynômes orthogonaux. La fonction hypergéométrique est en fait un cas particulier de la fonction hypergéométrique généralisée pFq(a1,...,ap ; b1,...,bq ; z). La fonction hypergéométrique est également solution d'une équation différentielle complexe linéaire du second ordre, dite hypergéométrique, comprenant trois (en). Toute équation différentielle linéaire du second ordre comprenant également trois points singuliers réguliers peut se ramener à cette équation. (fr)
  • En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée 2F1(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge). Selon les valeurs prises par les paramètres, cette fonction correspond à de nombreuses fonctions usuelles ou spéciales, notamment des polynômes orthogonaux. La fonction hypergéométrique est en fait un cas particulier de la fonction hypergéométrique généralisée pFq(a1,...,ap ; b1,...,bq ; z). La fonction hypergéométrique est également solution d'une équation différentielle complexe linéaire du second ordre, dite hypergéométrique, comprenant trois (en). Toute équation différentielle linéaire du second ordre comprenant également trois points singuliers réguliers peut se ramener à cette équation. (fr)
dbo:namedAfter
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 932704 (xsd:integer)
dbo:wikiPageLength
  • 14894 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190545459 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée 2F1(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge). Selon les valeurs prises par les paramètres, cette fonction correspond à de nombreuses fonctions usuelles ou spéciales, notamment des polynômes orthogonaux. La fonction hypergéométrique est en fait un cas particulier de la fonction hypergéométrique généralisée pFq(a1,...,ap ; b1,...,bq ; z). (fr)
  • En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée 2F1(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge). Selon les valeurs prises par les paramètres, cette fonction correspond à de nombreuses fonctions usuelles ou spéciales, notamment des polynômes orthogonaux. La fonction hypergéométrique est en fait un cas particulier de la fonction hypergéométrique généralisée pFq(a1,...,ap ; b1,...,bq ; z). (fr)
rdfs:label
  • Fonction hypergéométrique (fr)
  • Gaußsche hypergeometrische Funktion (de)
  • Hypergeometric function (en)
  • Hypergeometriska funktionen (sv)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of