En mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ ℓ ≤ m avec ℓ et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair.

Property Value
dbo:abstract
  • En mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ ℓ ≤ m avec ℓ et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair. L'équation générale de Legendre est rencontrée notamment en physique, par exemple dans la résolution de l'équation de Helmholtz en coordonnées sphériques. En particulier, les polynômes associés de Legendre jouent un rôle important dans la définition des harmoniques sphériques. (fr)
  • En mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ ℓ ≤ m avec ℓ et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair. L'équation générale de Legendre est rencontrée notamment en physique, par exemple dans la résolution de l'équation de Helmholtz en coordonnées sphériques. En particulier, les polynômes associés de Legendre jouent un rôle important dans la définition des harmoniques sphériques. (fr)
dbo:thumbnail
dbo:wikiPageID
  • 8647755 (xsd:integer)
dbo:wikiPageLength
  • 9896 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190779849 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ ℓ ≤ m avec ℓ et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair. (fr)
  • En mathématiques, un polynôme associé de Legendre, noté , est une solution particulière de l'équation générale de Legendre : laquelle n'a de solution régulière que sur l'intervalle [–1, 1] et si –m ≤ ℓ ≤ m avec ℓ et m entiers. Elle se réduit à l'équation différentielle de Legendre si m = 0. Cette fonction est un polynôme si m est un entier pair. Toutefois, l’appellation de « polynôme », bien qu'incorrecte, est quand même conservée dans le cas où m est un entier impair. (fr)
rdfs:label
  • Associated Legendre polynomials (en)
  • Funzione associata di Legendre (it)
  • Função de Legendre (pt)
  • Geassocieerde Legendrepolynoom (nl)
  • Polinomis associats de Legendre (ca)
  • Polynôme associé de Legendre (fr)
  • Stowarzyszone funkcje Legendre’a (pl)
  • Zugeordnete Legendrepolynome (de)
  • Приєднані функції Лежандра (uk)
  • ルジャンドルの微分方程式 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of