엔트로피(영어: entropy)는 열역학적 계의 유용하지 않은 (일로 변환할 수 없는) 에너지의 흐름을 설명할 때 이용되는 상태 함수다. 통계역학적으로, 주어진 거시적 상태에 대응하는 미시적 상태의 수의 로그로 생각할 수 있다. 엔트로피는 일반적으로 보존되지 않고, 열역학 제2법칙에 따라 시간에 따라 증가한다. 독일의 물리학자 루돌프 클라우지우스가 1850년대 초에 도입하였다. 대개 기호로 라틴 대문자 S를 쓴다.

PropertyValue
dbpedia-owl:abstract
  • 엔트로피(영어: entropy)는 열역학적 계의 유용하지 않은 (일로 변환할 수 없는) 에너지의 흐름을 설명할 때 이용되는 상태 함수다. 통계역학적으로, 주어진 거시적 상태에 대응하는 미시적 상태의 수의 로그로 생각할 수 있다. 엔트로피는 일반적으로 보존되지 않고, 열역학 제2법칙에 따라 시간에 따라 증가한다. 독일의 물리학자 루돌프 클라우지우스가 1850년대 초에 도입하였다. 대개 기호로 라틴 대문자 S를 쓴다.
  • Entropie je jedním ze základních a nejdůležitějších pojmů ve fyzice, teorii pravděpodobnosti a teorii informace, matematice a mnoha dalších oblastech vědy teoretické i aplikované. Setkáváme se s ní všude tam, kde hovoříme o pravděpodobnosti možných stavů daného systému či soustavy.V populárních výkladech se často vyskytuje přiblížení entropie jako veličiny udávající "míru neuspořádanosti" zkoumaného systému. Není to dobré vysvětlení, neboť tato "definice" používá pojem "neuspořádanost", který je však sám nedefinovaný. Vhodnější je intuitivní představa entropie jako míry neurčitosti systému. Zatímco "ostrá" rozdělení pravděpodobnosti (jako např. prahování) mají entropii nízkou, naopak "neostrá" či "rozmazaná" rozdělení pravděpodobnosti mají entropii vysokou. Za pravděpodobnostní rozložení s nejvyšší entropií lze považovat normální (pro danou střední hodnotu a směrodatnou odchylku) nebo rovnoměrné (pro daný interval) rozložení.Původ slova "entropie" je odvozen z řeckého εντροπία, "směrem k", (εν- "k" + τροπή "směrem").
  • Entropi adalah salah satu besaran termodinamika yang mengukur energi dalam sistem per satuan temperatur yang tak dapat digunakan untuk melakukan usaha. Mungkin manifestasi yang paling umum dari entropi adalah (mengikuti hukum termodinamika), entropi dari sebuah sistem tertutup selalu naik dan pada kondisi transfer panas, energi panas berpindah dari komponen yang bersuhu lebih tinggi ke komponen yang bersuhu lebih rendah. Pada suatu sistem yang panasnya terisolasi, entropi hanya berjalan satu arah (bukan proses reversibel/bolak-balik). Entropi suatu sistem perlu diukur untuk menentukan bahwa energi tidak dapat dipakai untuk melakukan usaha pada proses-proses termodinamika. Proses-proses ini hanya bisa dilakukan oleh energi yang sudah diubah bentuknya, dan ketika energi diubah menjadi kerja/usaha, maka secara teoritis mempunyai efisiensi maksimum tertentu. Selama kerja/usaha tersebut, entropi akan terkumpul pada sistem, yang lalu terdisipasi dalam bentuk panas buangan.Pada termodinamika klasik, konsep entropi didefinisikan pada hukum kedua termodinamika, yang menyatakan bahwa entropi dari sistem yang terisolasi selalu bertambah atau tetap konstan. Maka, entropi juga dapat menjadi ukuran kecenderungan suatu proses, apakah proses tersebut cenderung akan "terentropikan" atau akan berlangsung ke arah tertentu. Entropi juga menunjukkan bahwa energi panas selalu mengalir secara spontan dari daerah yang suhunya lebih tinggi ke daerah yang suhunya lebih rendah. Entropi termodinamika mempunyai dimensi energi dibagi temperatur, yang mempunyai Satuan Internasional joule per kelvin (J/K).Kata entropi pertama kali dicetuskan oleh Rudolf Clausius pada tahun 1865, berasal dari bahasa Yunani εντροπία [entropía], εν- [en-] (masuk) dan τροπή [tropē] (mengubah, mengonversi).
  • Fizikte Entropi, bir sistemin mekanik işe çevrilemeyecek termal enerjisini temsil eden termodinamik terimidir. Çoğunlukla bir sistemdeki rastgelelik ve düzensizlik olarak tanımlanır ve istatistikten teolojiye birçok alanda yararlanılır. Sembolü S'dir. Termodinamiğin 2. yasasıdır.
  • Entropie is een belangrijk begrip in de thermodynamica. Het is op het fundamenteelste niveau een maat voor de wanorde of de ontaarding in een systeem, of liever de waarschijnlijkheid, als het aantal mogelijke moleculaire configuraties van een macroscopische toestand (in termen van macroscopische grootheden druk, temperatuur, etc.) gedeeld door het totale aantal mogelijke moleculaire configuraties. Een toestand waarin macroscopische grootheden als druk en temperatuur ongelijk verdeeld zijn over een volume heeft in het algemeen veel minder realisatiemogelijkheden dan één met een gelijkmatige verdeling. De ongelijke verdeling van macroscopische grootheden in een geïsoleerd systeem (dat wil zeggen met een vast volume, zonder dat er energie in of uit kan) neigt dus op statistische gronden tot afvlakken van die ongelijkmatigheden. Een formele manier om dit uit te drukken is de tweede wet van de thermodynamica. Het begrip entropie werd geïntroduceerd door Rudolf Clausius.
  • Entropia – termodynamiczna funkcja stanu, określająca kierunek przebiegu procesów spontanicznych (samorzutnych) w odosobnionym układzie termodynamicznym. Entropia jest miarą stopnia nieuporządkowania układu. Jest wielkością ekstensywną. Zgodnie z drugą zasadą termodynamiki, jeżeli układ termodynamiczny przechodzi od jednego stanu równowagi do drugiego, bez udziału czynników zewnętrznych (a więc spontanicznie), to jego entropia zawsze rośnie. Pojęcie entropii wprowadził niemiecki uczony Rudolf Clausius.
  • Ентропия е понятие от философията и физиката. Във философията на науката то е дял от онтологията, а във физиката е мярка за безпорядъка (хаоса) в една термодинамична система. Думата има гръцки произход: εν (en - вътре) + τρέπω (trepo - преследвам, бягам, въртя) и е величина, характеризираща състоянието на една термодинамична система, т.е. изразяването на броя на възможните конфигурации или подреждания на градивните частици на системата. Ентропията е критерий за това колко близко до термодинамично равновесие е дадена система. Тя е по-голяма, когато хаосът, а следователно и неговата вероятност, са по-големи.
  • Az entrópia a tudomány (elsősorban a hőtan és az informatika) fontos fogalma, egy rendszer rendezetlenségi fokát jellemzi.Az entrópia műszót Rudolph Clausius (1822–1888) találta ki, és ezzel jellemezte a termodinamikában az anyagi rendszerek molekuláris rendezetlenségét, illetve termodinamikai valószínűségének a mértékét. Ebből következtetni lehet a maguktól végbemenő folyamatok irányára: a természetben egyre valószínűbb állapotok következnek be. Például a hő a melegebb testről a hidegebb test felé áramlik. Tehát bizonyos munkamennyiség minden spontán folyamatnál kárba vész, hővé alakul át. Emiatt a természetben a spontán folyamatok visszafordíthatatlanok. A munka, de bármely energiafajta is maradéktalanul hővé alakítható, míg a hő csak részben alakítható át másfajta energiává (ezért tartják alacsonyabb rendű energiának).Az entrópia és a rendezetlenség egyenértékűsége elvben még a termodinamikában felbukkan, de végleg Erwin Schrödinger tisztázta az életjelenségek kapcsán.Később – a formai hasonlóság alapján – Neumann János javasolta Shannonnak, hogy képletét nevezze entrópiának. De mivel negatív előjel szerepelt a képlet előtt, negentrópia lett a neve (régen antientrópia is), ami a rendszerek rendezettségének mértékét fejezi ki.
  • In thermodynamics, entropy (usual symbol S) is a measure of the number of specific ways in which a thermodynamic system may be arranged, often taken to be a measure of disorder, or a measure of progressing towards thermodynamic equilibrium. The entropy of an isolated system never decreases, because isolated systems spontaneously evolve towards thermodynamic equilibrium, the maximum entropy. Systems which are not isolated may decrease in entropy. Since entropy is a state function, the change in the entropy of a system is the same for any process going from a given initial state to a given final state, whether the process is reversible or irreversible. However irreversible processes increase the combined entropy of the system and its environment.The change in entropy (ΔS) was originally defined for a thermodynamically reversible process as,which is found from the uniform thermodynamic temperature (T) of a closed system dividing an incremental reversible transfer of heat into that system (dQ). The above definition is sometimes called the macroscopic definition of entropy because it can be used without regard to any microscopic picture of the contents of a system. In thermodynamics, entropy has been found to be more generally useful and it has several other formulations. Entropy was discovered when it was noticed to be a quantity that behaves as a function of state, as a consequence of the second law of thermodynamics. Entropy is an extensive property, but the entropy of a pure substance is usually given as an intensive property — either specific entropy (entropy per unit mass) or molar entropy (entropy per mole).The absolute entropy (S rather than ΔS) was defined later, using either statistical mechanics or the third law of thermodynamics.In the modern microscopic interpretation of entropy in statistical mechanics, entropy is the amount of additional information needed to specify the exact physical state of a system, given its thermodynamic specification. Understanding the role of thermodynamic entropy in various processes requires understanding how and why that information changes as the system evolves from its initial condition. It is often said that entropy is an expression of the disorder, or randomness of a system, or of our lack of information about it. The second law is now often seen as an expression of the fundamental postulate of statistical mechanics via the modern definition of entropy. Entropy has the dimension of energy divided by temperature, which has a unit of joules per kelvin (J/K) in the International System of Units.
  • L'entropia és una magnitud termodinàmica definida originàriament com a criteri per predir l'evolució dels sistemes termodinàmics.Des de la seva introducció per Rudolf Clausius l'any 1865, han aparegut diverses definicions d'entropia, la més rellevant de les quals (elaborada per Ludwig Boltzmann) va relacionar el concepte d'entropia amb el grau de desordre d'un sistema. Aquesta nova perspectiva de l'entropia va permetre estendre el concepte a diferents camps, com ara a la teoria de la informació, la intel·ligència artificial, la vida o el temps.
  • In meccanica statistica l'entropia (dal greco antico ἐν en, "dentro", e τροπή tropé, "trasformazione") è una grandezza (più in particolare una coordinata generalizzata) che viene interpretata come una misura del disordine presente in un sistema fisico qualsiasi, incluso, come caso limite, l'universo. Viene generalmente rappresentata dalla lettera S. Nel Sistema Internazionale si misura in joule su kelvin (J/K).Nella termodinamica classica, il primo campo in cui l'entropia venne introdotta, S è una funzione di stato di un sistema in equilibrio termodinamico, che, quantificando l'indisponibilità di un sistema a produrre lavoro, si introduce insieme al secondo principio della termodinamica. In base a questa definizione si può dire, in forma non rigorosa ma esplicativa, che quando un sistema passa da uno stato di equilibrio ordinato ad uno disordinato la sua entropia aumenta; questo fatto fornisce indicazioni sulla direzione in cui evolve spontaneamente un sistema.L'approccio molecolare della meccanica statistica generalizza l'entropia agli stati di non-equilibrio correlandola più strettamente al concetto di ordine, precisamente alle possibili diverse disposizioni dei livelli molecolari e quindi differenti probabilità degli stati in cui può trovarsi macroscopicamente un sistema.Il concetto di entropia ha potuto grazie a questa generalizzazione essere esteso ad ambiti non strettamente fisici, come le scienze sociali, la teoria dei segnali, la teoria dell'informazione e conoscere quindi una vastissima popolarità.
  • Энтропи́я (от др.-греч. ἐντροπία — поворот, превращение) — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы, определяющая меру необратимого рассеивания энергии. В статистической физике энтропия является мерой вероятности осуществления какого-либо макроскопического состояния. В теории информации энтропия — это мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации.В исторической науке энтропия вводится для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).Величина, обратная энтропии, именуется негэнтропией.
  • En termodinámica, la entropía (simbolizada como S) es una magnitud física que, mediante cálculo, permite determinar la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850; y Ludwig Boltzmann, quien encontró en 1877 la manera de expresar matemáticamente este concepto, desde el punto de vista de la probabilidad.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 1136720 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 57654 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 148 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110391680 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1941 (xsd:integer)
  • 1957 (xsd:integer)
  • 1960 (xsd:integer)
  • 1965 (xsd:integer)
  • 1981 (xsd:integer)
  • 1982 (xsd:integer)
  • 1985 (xsd:integer)
  • 1987 (xsd:integer)
  • 1988 (xsd:integer)
  • 1998 (xsd:integer)
  • 2003 (xsd:integer)
prop-fr:auteur
  • A.B. Pippard
  • Frederic Reif
  • Linda E. Reichl
  • Percy W. Bridgman
  • Ryogo Kubo
prop-fr:auteurs
  • Andreas Greven, Gerhard Keller, & Gerald Warnecke
  • B. Diu, C. Guthmann, D. Lederer, B. Roulet
  • Herbert G. Callen 494 pp.
  • Kerson Huang 512 pp.
  • Mark W. Zemansky & Richard H. Dittman
prop-fr:format
  • 2 (xsd:integer)
  • poche
prop-fr:isbn
  • 0 (xsd:integer)
  • 2 (xsd:integer)
  • 978 (xsd:integer)
  • 521091012 (xsd:integer)
prop-fr:langue
  • en
prop-fr:lienAuteur
  • Roger Balian
  • Georges Bruhat
  • Percy W. Bridgman
  • Yves Rocard
prop-fr:lieu
  • Amsterdam
  • Boston
  • Cambridge
  • New York
  • Auckland
  • Princeton
prop-fr:nom
  • Rocard
  • Bruhat
  • Balian
prop-fr:numéroD'édition
  • 2 (xsd:integer)
  • 6 (xsd:integer)
prop-fr:pagesTotales
  • 230 (xsd:integer)
  • 426 (xsd:integer)
  • 540 (xsd:integer)
  • 544 (xsd:integer)
  • 640 (xsd:integer)
  • 651 (xsd:integer)
  • 848 (xsd:integer)
  • 912 (xsd:integer)
prop-fr:prénom
  • Georges
  • Roger
  • Yves
prop-fr:réimpression
  • 1967 (xsd:integer)
  • 1968 (xsd:integer)
  • 1981 (xsd:integer)
  • 1998 (xsd:integer)
  • avril 2004
  • par North-Holland
prop-fr:titre
  • Physique statistique
  • Thermodynamique
  • Thermodynamics
  • Statistical Mechanics
  • A Modern Course in Statistical Physics
  • Elements of Classical Thermodynamics - For Advanced Students of Physics
  • Thermodynamics & an introduction to Thermostatistics
  • Cours de Physique Générale
  • Entropy
  • Fundamentals of Statistical & Thermal Physics
  • Heat & Thermodynamics
  • The Nature of Thermodynamics
  • Du Microscopique au Macroscopique - Cours de Physique Statistique de l'École Polytechnique
prop-fr:titreVolume
  • Thermodynamique
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Cambridge University Press
  • Ellipses
  • Harvard University Press
  • Hermann
  • John Wiley & Sons
  • Masson
  • McGraw-Hill
  • Princeton University Press
dcterms:subject
rdfs:comment
  • 엔트로피(영어: entropy)는 열역학적 계의 유용하지 않은 (일로 변환할 수 없는) 에너지의 흐름을 설명할 때 이용되는 상태 함수다. 통계역학적으로, 주어진 거시적 상태에 대응하는 미시적 상태의 수의 로그로 생각할 수 있다. 엔트로피는 일반적으로 보존되지 않고, 열역학 제2법칙에 따라 시간에 따라 증가한다. 독일의 물리학자 루돌프 클라우지우스가 1850년대 초에 도입하였다. 대개 기호로 라틴 대문자 S를 쓴다.
  • Fizikte Entropi, bir sistemin mekanik işe çevrilemeyecek termal enerjisini temsil eden termodinamik terimidir. Çoğunlukla bir sistemdeki rastgelelik ve düzensizlik olarak tanımlanır ve istatistikten teolojiye birçok alanda yararlanılır. Sembolü S'dir. Termodinamiğin 2. yasasıdır.
  • In thermodynamics, entropy (usual symbol S) is a measure of the number of specific ways in which a thermodynamic system may be arranged, often taken to be a measure of disorder, or a measure of progressing towards thermodynamic equilibrium. The entropy of an isolated system never decreases, because isolated systems spontaneously evolve towards thermodynamic equilibrium, the maximum entropy. Systems which are not isolated may decrease in entropy.
  • Entropie je jedním ze základních a nejdůležitějších pojmů ve fyzice, teorii pravděpodobnosti a teorii informace, matematice a mnoha dalších oblastech vědy teoretické i aplikované. Setkáváme se s ní všude tam, kde hovoříme o pravděpodobnosti možných stavů daného systému či soustavy.V populárních výkladech se často vyskytuje přiblížení entropie jako veličiny udávající "míru neuspořádanosti" zkoumaného systému.
  • Entropie is een belangrijk begrip in de thermodynamica. Het is op het fundamenteelste niveau een maat voor de wanorde of de ontaarding in een systeem, of liever de waarschijnlijkheid, als het aantal mogelijke moleculaire configuraties van een macroscopische toestand (in termen van macroscopische grootheden druk, temperatuur, etc.) gedeeld door het totale aantal mogelijke moleculaire configuraties.
  • Энтропи́я (от др.-греч. ἐντροπία — поворот, превращение) — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы, определяющая меру необратимого рассеивания энергии. В статистической физике энтропия является мерой вероятности осуществления какого-либо макроскопического состояния.
  • En termodinámica, la entropía (simbolizada como S) es una magnitud física que, mediante cálculo, permite determinar la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación.
  • Az entrópia a tudomány (elsősorban a hőtan és az informatika) fontos fogalma, egy rendszer rendezetlenségi fokát jellemzi.Az entrópia műszót Rudolph Clausius (1822–1888) találta ki, és ezzel jellemezte a termodinamikában az anyagi rendszerek molekuláris rendezetlenségét, illetve termodinamikai valószínűségének a mértékét. Ebből következtetni lehet a maguktól végbemenő folyamatok irányára: a természetben egyre valószínűbb állapotok következnek be.
  • Ентропия е понятие от философията и физиката. Във философията на науката то е дял от онтологията, а във физиката е мярка за безпорядъка (хаоса) в една термодинамична система. Думата има гръцки произход: εν (en - вътре) + τρέπω (trepo - преследвам, бягам, въртя) и е величина, характеризираща състоянието на една термодинамична система, т.е. изразяването на броя на възможните конфигурации или подреждания на градивните частици на системата.
  • Entropia – termodynamiczna funkcja stanu, określająca kierunek przebiegu procesów spontanicznych (samorzutnych) w odosobnionym układzie termodynamicznym. Entropia jest miarą stopnia nieuporządkowania układu. Jest wielkością ekstensywną. Zgodnie z drugą zasadą termodynamiki, jeżeli układ termodynamiczny przechodzi od jednego stanu równowagi do drugiego, bez udziału czynników zewnętrznych (a więc spontanicznie), to jego entropia zawsze rośnie.
  • Entropi adalah salah satu besaran termodinamika yang mengukur energi dalam sistem per satuan temperatur yang tak dapat digunakan untuk melakukan usaha. Mungkin manifestasi yang paling umum dari entropi adalah (mengikuti hukum termodinamika), entropi dari sebuah sistem tertutup selalu naik dan pada kondisi transfer panas, energi panas berpindah dari komponen yang bersuhu lebih tinggi ke komponen yang bersuhu lebih rendah.
  • L'entropia és una magnitud termodinàmica definida originàriament com a criteri per predir l'evolució dels sistemes termodinàmics.Des de la seva introducció per Rudolf Clausius l'any 1865, han aparegut diverses definicions d'entropia, la més rellevant de les quals (elaborada per Ludwig Boltzmann) va relacionar el concepte d'entropia amb el grau de desordre d'un sistema.
  • In meccanica statistica l'entropia (dal greco antico ἐν en, "dentro", e τροπή tropé, "trasformazione") è una grandezza (più in particolare una coordinata generalizzata) che viene interpretata come una misura del disordine presente in un sistema fisico qualsiasi, incluso, come caso limite, l'universo. Viene generalmente rappresentata dalla lettera S.
rdfs:label
  • Entropie (thermodynamique)
  • Entropi
  • Entropi
  • Entropia
  • Entropia
  • Entropia
  • Entropia
  • Entropia
  • Entropie
  • Entropie
  • Entropie (Thermodynamik)
  • Entropy
  • Entropía
  • Entrópia
  • Ентропия
  • Энтропия
  • エントロピー
  • 엔트로피
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of