En algèbre commutative, dans un anneau (commutatif) intègre, un élément p est dit irréductible s'il n'est ni inversible, ni produit de deux éléments non inversibles. Il est dit premier s'il n'est ni nul ni inversible et si, pour tout produit ab divisible par p, l'un des deux facteurs a ou b est divisible par p. Tout élément premier est irréductible. Dans un anneau factoriel (comme l'anneau des entiers ou l'anneau des polynômes à coefficients dans un corps), ces deux notions sont équivalentes. Deux éléments a et b sont dits premiers entre eux si tout diviseur commun à a et b est inversible.

Property Value
dbo:abstract
  • En algèbre commutative, dans un anneau (commutatif) intègre, un élément p est dit irréductible s'il n'est ni inversible, ni produit de deux éléments non inversibles. Il est dit premier s'il n'est ni nul ni inversible et si, pour tout produit ab divisible par p, l'un des deux facteurs a ou b est divisible par p. Tout élément premier est irréductible. Dans un anneau factoriel (comme l'anneau des entiers ou l'anneau des polynômes à coefficients dans un corps), ces deux notions sont équivalentes. Deux éléments a et b sont dits premiers entre eux si tout diviseur commun à a et b est inversible. (fr)
  • En algèbre commutative, dans un anneau (commutatif) intègre, un élément p est dit irréductible s'il n'est ni inversible, ni produit de deux éléments non inversibles. Il est dit premier s'il n'est ni nul ni inversible et si, pour tout produit ab divisible par p, l'un des deux facteurs a ou b est divisible par p. Tout élément premier est irréductible. Dans un anneau factoriel (comme l'anneau des entiers ou l'anneau des polynômes à coefficients dans un corps), ces deux notions sont équivalentes. Deux éléments a et b sont dits premiers entre eux si tout diviseur commun à a et b est inversible. (fr)
dbo:wikiPageID
  • 696524 (xsd:integer)
dbo:wikiPageLength
  • 9644 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 191488858 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En algèbre commutative, dans un anneau (commutatif) intègre, un élément p est dit irréductible s'il n'est ni inversible, ni produit de deux éléments non inversibles. Il est dit premier s'il n'est ni nul ni inversible et si, pour tout produit ab divisible par p, l'un des deux facteurs a ou b est divisible par p. Tout élément premier est irréductible. Dans un anneau factoriel (comme l'anneau des entiers ou l'anneau des polynômes à coefficients dans un corps), ces deux notions sont équivalentes. Deux éléments a et b sont dits premiers entre eux si tout diviseur commun à a et b est inversible. (fr)
  • En algèbre commutative, dans un anneau (commutatif) intègre, un élément p est dit irréductible s'il n'est ni inversible, ni produit de deux éléments non inversibles. Il est dit premier s'il n'est ni nul ni inversible et si, pour tout produit ab divisible par p, l'un des deux facteurs a ou b est divisible par p. Tout élément premier est irréductible. Dans un anneau factoriel (comme l'anneau des entiers ou l'anneau des polynômes à coefficients dans un corps), ces deux notions sont équivalentes. Deux éléments a et b sont dits premiers entre eux si tout diviseur commun à a et b est inversible. (fr)
rdfs:label
  • Primalité dans un anneau (fr)
  • Primalité dans un anneau (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:isPartOf of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of