En théorie des ensembles, les alephs sont les cardinaux des ensembles bien ordonnés infinis, et ℵ₁ (lire Aleph-un) est le plus petit d'entre eux qui ne soit pas dénombrable, c'est-à-dire le plus petit qui soit strictement supérieur à ℵ₀, cardinal de l'ensemble des entiers naturels ; ℵ₁ est aussi le cardinal de l'ensemble des ordinaux dénombrables (dit autrement, le cardinal associé à l'ordinal de Hartogs de l'ensemble des entiers naturels). L'hypothèse du continu de Cantor est que la puissance du continu, le cardinal de l'ensemble des réels, noté 2ℵ₀ ou , égale ℵ₁. * Portail des mathématiques

Property Value
dbo:abstract
  • En théorie des ensembles, les alephs sont les cardinaux des ensembles bien ordonnés infinis, et ℵ₁ (lire Aleph-un) est le plus petit d'entre eux qui ne soit pas dénombrable, c'est-à-dire le plus petit qui soit strictement supérieur à ℵ₀, cardinal de l'ensemble des entiers naturels ; ℵ₁ est aussi le cardinal de l'ensemble des ordinaux dénombrables (dit autrement, le cardinal associé à l'ordinal de Hartogs de l'ensemble des entiers naturels). Par définition, il n'existe aucun ensemble dont le cardinal soit strictement compris entre ℵ₀ et ℵ₁. En présence de l'axiome du choix, tous les ensembles pouvant être bien ordonnés, ℵ₁ est le plus petit cardinal infini non dénombrable. L'hypothèse du continu de Cantor est que la puissance du continu, le cardinal de l'ensemble des réels, noté 2ℵ₀ ou , égale ℵ₁. * Portail des mathématiques (fr)
  • En théorie des ensembles, les alephs sont les cardinaux des ensembles bien ordonnés infinis, et ℵ₁ (lire Aleph-un) est le plus petit d'entre eux qui ne soit pas dénombrable, c'est-à-dire le plus petit qui soit strictement supérieur à ℵ₀, cardinal de l'ensemble des entiers naturels ; ℵ₁ est aussi le cardinal de l'ensemble des ordinaux dénombrables (dit autrement, le cardinal associé à l'ordinal de Hartogs de l'ensemble des entiers naturels). Par définition, il n'existe aucun ensemble dont le cardinal soit strictement compris entre ℵ₀ et ℵ₁. En présence de l'axiome du choix, tous les ensembles pouvant être bien ordonnés, ℵ₁ est le plus petit cardinal infini non dénombrable. L'hypothèse du continu de Cantor est que la puissance du continu, le cardinal de l'ensemble des réels, noté 2ℵ₀ ou , égale ℵ₁. * Portail des mathématiques (fr)
dbo:follows
dbo:wikiPageID
  • 386718 (xsd:integer)
dbo:wikiPageLength
  • 1331 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 155145470 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des ensembles, les alephs sont les cardinaux des ensembles bien ordonnés infinis, et ℵ₁ (lire Aleph-un) est le plus petit d'entre eux qui ne soit pas dénombrable, c'est-à-dire le plus petit qui soit strictement supérieur à ℵ₀, cardinal de l'ensemble des entiers naturels ; ℵ₁ est aussi le cardinal de l'ensemble des ordinaux dénombrables (dit autrement, le cardinal associé à l'ordinal de Hartogs de l'ensemble des entiers naturels). L'hypothèse du continu de Cantor est que la puissance du continu, le cardinal de l'ensemble des réels, noté 2ℵ₀ ou , égale ℵ₁. * Portail des mathématiques (fr)
  • En théorie des ensembles, les alephs sont les cardinaux des ensembles bien ordonnés infinis, et ℵ₁ (lire Aleph-un) est le plus petit d'entre eux qui ne soit pas dénombrable, c'est-à-dire le plus petit qui soit strictement supérieur à ℵ₀, cardinal de l'ensemble des entiers naturels ; ℵ₁ est aussi le cardinal de l'ensemble des ordinaux dénombrables (dit autrement, le cardinal associé à l'ordinal de Hartogs de l'ensemble des entiers naturels). L'hypothèse du continu de Cantor est que la puissance du continu, le cardinal de l'ensemble des réels, noté 2ℵ₀ ou , égale ℵ₁. * Portail des mathématiques (fr)
rdfs:label
  • Alef uno (es)
  • Aleph-un (fr)
  • Alef uno (es)
  • Aleph-un (fr)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:followedBy of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of