La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement.

PropertyValue
dbpedia-owl:abstract
  • La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique). La température est une variable importante dans d’autres disciplines : météorologie et climatologie, médecine, et chimie.L’échelle de température la plus répandue est le degré Celsius, dans laquelle la glace (formée d'eau) fond à 0 °C et l'eau bout à environ 100 °C dans les conditions standard de pression. Dans les pays utilisant le système impérial (anglo-saxon) d’unités, on emploie le degré Fahrenheit où la glace fond à 32 °F et l'eau bout à 212 °F. L’unité du système international d'unités (SI), d’utilisation scientifique et définie à partir du zéro absolu, est le kelvin dont la graduation est presque identique à celle des degrés centigrades.
  • Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii.Temperaturę można ściśle zdefiniować tylko dla stanów równowagi termodynamicznej, bowiem z termodynamicznego punktu widzenia jest ona wielkością reprezentującą wspólną własność dwóch układów pozostających w równowadze ze sobą.Temperatura jest miarą stanu cieplnego danego ciała. Jeśli dwa ciała mają tę samą temperaturę, to w bezpośrednim kontakcie nie przekazują sobie ciepła, gdy zaś temperatura obu ciał jest różna, to następuje przekazywanie ciepła z ciała o wyższej temperaturze do ciała o niższej – aż do wyrównania się temperatury obu ciał.
  • La temperatura és una magnitud física de la matèria que expressa quantitativament les nocions comunes de calor i fred. Els objectes de baixa temperatura són freds, mentre que els nivells de temperatures més altes es coneixen amb els noms de tebi o calent. La temperatura es mesura quantitativament amb termòmetres, que poden ser calibrats respecte a diferents escales de temperatura.A gairebé tot el món s'utilitza l'escala Celsius (°C) per a la mesura de la majoria de les temperatures. Aquesta escala té el mateix escalat incremental que l'escala Kelvin, usada pels científics, però fixa el seu punt nul en els 273,15 kelvins, 0 °C = 273,15 K, el punt de congelació de l'aigua. Tanmateix, hi ha alguns pocs països, sobretot els Estats Units, on encara s'utilitza l'escala Fahrenheit a la vida diària, una escala històrica a la qual l'aigua es congela a 32 °F i bull a 212 °F.A efectes pràctics de la mesura de la temperatura dins dels camps de la ciència, el Sistema Internacional d'Unitats (SI) defineix una escala i una unitat per a la temperatura termodinàmica basant-se en un segon punt de referència fàcilment reproduïble com és la temperatura del punt triple de l'aigua. Per raons històriques, el punt triple de l'aigua ha estat fixat en 273,16 unitats de l'interval de mesura, que ha estat anomenat kelvin (en minúscula) en honor del físic escocès William Thomson (Lord Kelvin) que va definir per primera vegada l'escala. El símbol del kelvin és K (en majúscula).La temperatura és una de les principals propietats estudiades en el camp de la termodinàmica, en aquest camp són particularment importants les diferències de temperatura entre diferents regions de la matèria, ja que aquestes diferències són la força motriu de la calor, que és la transferència de l'energia tèrmica. Espontàniament, la calor flueix només de les regions de major temperatura a les regions de menor temperatura. De manera que si no es transfereix calor entre dos objectes és perquè ambdós objectes tenen la mateixa temperatura.Segons l'enfocament de la termodinàmica clàssica, la temperatura d'un objecte varia proporcionalment a la velocitat de les partícules que conté, no depèn del nombre de partícules (de la massa) sinó de la seva velocitat mitjana: a major temperatura major velocitat mitjana. Per tant, la temperatura està lligada directament a l'energia cinètica mitjana de les partícules que es mouen en relació al centre de massa de l'objecte. La temperatura és una variable intensiva, ja que és independent de la quantitat de les partícules contingudes a l'interior d'un objecte, ja siguin àtoms, molècules o electrons, és una propietat que és inherent al sistema i no depèn ni de la quantitat de substància ni del tipus de material. Per tal que hom pugui determinar la temperatura d'un sistema, aquest ha d'estar en equilibri termodinàmic. Es pot considerar que la temperatura varia amb la posició només si per a cada punt hi ha una petita zona al seu voltant que es pot tractar com un sistema termodinàmic en equilibri. A la termodinàmica estadística, en comptes de partícules es parla de graus de llibertat.En un enfocament més fonamental, la definició empírica de la temperatura es deriva de les condicions de l'equilibri tèrmic, que són expressades al principi zero de la termodinàmica. Quan dos sistemes són en equilibri tèrmic tenen la mateixa temperatura. L'extensió d'aquest principi com una relació d'equivalència entre diversos sistemes justifica fonamentalment la utilització del termòmetre i estableix els principis de la seva construcció per a mesurar la temperatura. Tot i que el principi zero de la termodinàmica permetria la definició empírica de moltes escales de temperatura, el segon principi de la termodinàmica selecciona una única definició com a la preferida, la temperatura absoluta, coneguda com a temperatura termodinàmica. Aquesta funció correspon a la variació de l'energia interna pel que fa als canvis a l'entropia d'un sistema. El seu origen natural, intrínsec o punt nul és el zero absolut, punt on l'entropia de qualsevol sistema és mínima. Encara que aquesta és la temperatura mínima absoluta descrita pel model, el tercer principi de la termodinàmica postula que el zero absolut no pot ser assolit per cap sistema físic.
  • 온도(溫度, 영어: temperature)은 물질의 뜨겁고 찬 정도를 나타내는 물리량이다. 온도는 물리학에서 가장 기초적이고 중요한 물리량 중 하나이다. 온도는 일반적으로 다음 두 가지 방법으로 정의된다.일반적인 정의의 온도는 온도의 경험적인 개념과, 독립적인 온도의 존재성을 보장하는 열역학 제 0법칙에 기초한다. 일반적인 정의의 온도는 온도의 기준을 통해 만들어진 온도계로 측정되는 값이다. 열역학적 정의의 온도는 19세기 중반 열기관과 열역학에서 이어지는 통계역학이 발전되면서 에너지와 엔트로피간의 이해가 높아지면서 파생되어 나왔다. 열역학적 정의의 온도는 에너지를 엔트로피로 편미분한 값으로 나타내지며, 다양한 기초적인 물리법칙과 근본적으로 관련되어있다. 열역학적 정의의 온도는 계의 평형이 이뤄지지 않으면 정의할 수 없다. 온도의 SI단위는 켈빈(K)이다. 켈빈은 물의 삼중점의 열역학적 온도의 1/273.16으로 정의된다. 일반적인 정의에 사용되는 온도 기준에 열역학적 정의의 온도를 사용함으로써 일반적인 정의의 온도라도 물리학적인 의미, 다양한 기초적인 물리법칙과의 관련성을 만들 수 있다.
  • Sıcaklık, bir cismin sıcaklığının ya da soğukluğunun bir ölçüsüdür. Bir sistemin ortalama moleküler kinetik enerjisinin bir ölçüsüdür. Gazlar için kinetik enerji, mutlak sıcaklık dereceleriyle orantılıdır. Duyularla algılanmakta ve genellikle sıcak veya soğuk terimleri ile ifade edilmektedir. Teknik olarak bu değerlendirme doğru değildir. İki cisim birbirisine temas ettirildiğinde sıcak olan soğumakta soğuk olan ısınmakta ve belirli bir süre temas halinde kaldıklarında her ikisi de aynı sıcaklığa gelmektedir. Buradan yola çıkarak sıcaklık bir maddenin ısıl durumunu belirten ve ısı geçişine neden olan etken olarak tanımlanabilir. Termik denge halinde bulunmayan sistemle çevresini termik denge haline getirmeye zorlayan potansiyeldir. Termik denge sağlandıktan sonra bu potansiyel kalkmakta sistemde çevresiyle aynı değeri almaktadır. Noktasal bir özelliktir. Enerjinin mikroskobik düzeydeki statik hâlidir. Bir maddenin ortalama hıza sahip herhangi bir molekülünün kinetik enerjisiyle doğru orantılı olan büyüklüğüne denir. Sıcaklık genleşmeye bakılarak dolaylı yoldan ölçülebilir. Ölçümünde termometre denilen cihaz kullanılmaktadır. Bir cismin etrafına kendiliğinden enerji verme eğiliminin bir ölçüsüdür. Enerji veren madde daha yüksek sıcaklıktadır.
  • La temperatura es una magnitud referida a las nociones comunes de caliente, tibio o frío que puede ser medida con un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también). El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor «cero kelvin» (0 K) al «cero absoluto», y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius, llamada «centígrada»; y, en mucha menor medida, y prácticamente sólo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y sólo en algunos campos de la ingeniería.
  • A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. Változása szorosan összefügg az anyag más makroszkopikus tulajdonságainak változásával. E jellemzőt az ember elsősorban tapintás útján, a hőérzettel észleli, másodsorban hőmérő segítségével. A hőtan, más néven termodinamika tudományának egyik alapfogalma.A hőmérséklet az intenzív mennyiségek közé tartozik, tehát nem additív, két test között hőáramlással kiegyenlítődésre törekszik. A hőmérőben található folyadék (higany, alkohol) a hőmérséklet változásai miatt halad fel, le.Fizikai szempontból a hőmérséklet az anyagot felépítő részecskék átlagos mozgási energiájával kapcsolatos mennyiség. A részecskék egy szabadsági fokra (például egy kitüntetett irányú mozgásra) jutó mozgási energiájának hosszabb időtávon mért átlaga T hőmérsékleten kT, ahol k a Boltzmann-állandó. Hangsúlyozzuk tehát, hogy a hőmérséklet egy olyan fizikai mennyiség, amit per definitionem arányosnak választottak az anyagrészecskék kinetikus energiájával, és a k arányossági tényező, a Boltzmann-állandó, a választott skáláink miatt lesz 1,380 6505(24) ·10‒23 joule/kelvin értékű. Látszik, hogy a hőmérséklet statisztikus fogalom, ilyen szempontú leírása a statisztikus fizika témakörébe tartozik.
  • Температурата (означава се със символа T) (на латински: temperatura — правилно смесване, нормално състояние) е физична величина, характеризираща средната кинетична енергия на частиците от дадена макроскопична система, намираща се в състояние на термодинамично равновесие. Тя е свързана също със субективните усещания за топло и студено, а количествено се измерва с термометри, които могат да бъдат калибрирани да показват температурата в най-различни температурни скали.Температурата е физично свойство на материята, което количествено изразява общите понятия за горещо и студено. Предмети с ниска температура са студени, а с различни степени на по-високи температури са по-топли или горещи. Когато пътя за пренос на топлина между тях е отворен, топлината спонтанно тече от тела с по-висока температура към тела с по-ниска температура. Дебитът се увеличава с температурната разлика, а не с топлинна енергия, тя ще се обменя между тела със същата температура, които след това се казва, че са в „топлинно равновесие“. В термодинамичната система, в която ентропията се счита за независима външна контролираща променлива, константа, или термодинамичната температура се определя като производната на вътрешната енергия по отношението на ентропията. В един идеален газ, съставните молекули не показват вътрешни възбуждания. Те се движат по първия закон на Нютон за движението, свободно и независимо един от друг, освен по време на сблъсъци, които продължават пренебрежимо кратко време. Температурата на идеален газ е пропорционална на средната транслационна кинетична енергия на молекулите.Количествено температурата се измерва с термометри, които могат да бъдат калибрирани с различни температурни скали.Амплитудата на температурните вибрации се увеличава с температурата. Температурата играе важна роля във всички области на природните науки, като физика, геология, химия, атмосферни науки и биология.В равновесно състояние температурата има еднаква стойност за всички макроскопични части на системата. Ако в системата две тела имат еднаква температура, кинетичната енергия на техните частици не се предава между телата. Ако има разлика между температурите, то определено количество топлина се предава от тялото с по-висока температура към тялото с по-ниска температура, до изравняване на температурите. Това количество топлина се определя от Първия закон на термодинамиката и свойствата на температурата се изучават от раздела термодинамика. Температурата също така играе важна роля в много области на науката като физиката, химията и биологията.Температурата е едно от основните понятия в областта на термодинамиката. Особено важни в тази област са разликите в температурата между различни части, защото тези различия са движещата сила за топлина,, а топлината е пренос на топлинна енергия от места с по-висока температура към места с по-ниска температура.
  • 温度(おんど)とは、寒暖の度合いを数量で表したもの。具体的には物質を構成する分子運動のエネルギーの統計値。このため温度には下限が存在し、分子運動が止まっている状態が温度0K(絶対零度)である。ただし、分子運動が0となるのは古典的な極限としてであり、実際は、量子力学における不確定性原理から、絶対零度であっても、分子運動は0にならない(止まっていない)。温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す。
  • La temperatura è la proprietà fisica intensiva, definibile per mezzo di una grandezza fisica scalare (ovvero non dotata di direzione e verso), che indica lo stato termico di un sistema. La differenza di temperatura tra due sistemi, che sono in contatto termico, determina un flusso di calore in direzione del sistema più freddo, raggiungendo l'equilibrio termico.
  • A temperature is a numerical measure of hot and cold. Its measurement is by detection of heat radiation or particle velocity or kinetic energy, or by the bulk behavior of a thermometric material. It may be calibrated in any of various temperature scales, Celsius, Fahrenheit, Kelvin, etc. The fundamental physical definition of temperature is provided by thermodynamics.Measurements with a small thermometer, or by detection of heat radiation, can show that the temperature of a body of material can vary from time to time and from place to place within it. If changes happen too fast, or with too small a spacing, within a body, it may be impossible to define its temperature.Within a body that exchanges no energy or matter with its surroundings, temperature tends to become spatially uniform as time passes. When a path permeable only to heat is open between two bodies, energy always transfers spontaneously as heat from a warmer body to a cooler one. The transfer rate depends on the nature of the path. Between two bodies with the same temperature, no heat flows. These bodies are said to be in thermal equilibrium.The kinetic theory offers a valuable but limited account of the behavior of the materials of macroscopic systems. It indicates the absolute temperature as proportional to the average kinetic energy of the random microscopic motions of their constituent microscopic particles such as electrons, atoms, and molecules.The coldest theoretical temperature is called absolute zero. It can be approached but not reached in any actual physical system. It is denoted by 0 K on the Kelvin scale, −273.15 °C on the Celsius scale, and −459.67 °F on the Fahrenheit scale. In matter at absolute zero, the motions of microscopic constituents are minimal.Temperature is important in all fields of natural science, including physics, geology, chemistry, atmospheric sciences and biology.
  • Temperatuur is een maat voor hoe warm of koud iets is. Natuurkundig gezien is het een maat voor de gemiddelde chaotische bewegingsenergie per molecuul, plus de beweging van atomen in moleculen. Het woord wordt ook specifiek gebruikt in de betekenissen koorts en buitenluchttemperatuur.
  • Teplota je charakteristika tepelného stavu hmoty.V obecném významu je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého.V přírodních a technických vědách a jejich aplikacích je to skalární intenzivní veličina, která je vzhledem ke svému pravděpodobnostnímu charakteru vhodná k popisu stavu ustálených makroskopických systémů.Teplota souvisí s kinetickou energií částic látky.Teplota je základní fyzikální veličinou soustavy SI s jednotkou kelvin (K) a vedlejší jednotkou stupeň Celsia (°C).Nejnižší možnou teplotou je teplota absolutní nuly (0 K; -273,15 °C), ke které se lze libovolně přiblížit, avšak nelze jí dosáhnout.K měření teploty se používají teploměry.Teplota je ústředním pojmem termiky a klíčovou veličinou pro popis tepelných jevů. Projevuje se i v mnoha dalších fyzikálních jevech a závisí na ní mnohé makroskopické mechanické, elektromagnetické i chemické vlastnosti látek. Její význam zasahuje do širokého spektra oborů lidské činnosti, je důležitým pojmem např. v průmyslových aplikacích, lékařství a ekologii.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 7992 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 15606 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 118 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 107850968 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wikiquote
  • température
prop-fr:wiktionary
  • température
  • température
dcterms:subject
rdf:type
rdfs:comment
  • La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement.
  • 温度(おんど)とは、寒暖の度合いを数量で表したもの。具体的には物質を構成する分子運動のエネルギーの統計値。このため温度には下限が存在し、分子運動が止まっている状態が温度0K(絶対零度)である。ただし、分子運動が0となるのは古典的な極限としてであり、実際は、量子力学における不確定性原理から、絶対零度であっても、分子運動は0にならない(止まっていない)。温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す。
  • La temperatura è la proprietà fisica intensiva, definibile per mezzo di una grandezza fisica scalare (ovvero non dotata di direzione e verso), che indica lo stato termico di un sistema. La differenza di temperatura tra due sistemi, che sono in contatto termico, determina un flusso di calore in direzione del sistema più freddo, raggiungendo l'equilibrio termico.
  • Temperatuur is een maat voor hoe warm of koud iets is. Natuurkundig gezien is het een maat voor de gemiddelde chaotische bewegingsenergie per molecuul, plus de beweging van atomen in moleculen. Het woord wordt ook specifiek gebruikt in de betekenissen koorts en buitenluchttemperatuur.
  • La temperatura és una magnitud física de la matèria que expressa quantitativament les nocions comunes de calor i fred. Els objectes de baixa temperatura són freds, mentre que els nivells de temperatures més altes es coneixen amb els noms de tebi o calent. La temperatura es mesura quantitativament amb termòmetres, que poden ser calibrats respecte a diferents escales de temperatura.A gairebé tot el món s'utilitza l'escala Celsius (°C) per a la mesura de la majoria de les temperatures.
  • Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice.
  • Sıcaklık, bir cismin sıcaklığının ya da soğukluğunun bir ölçüsüdür. Bir sistemin ortalama moleküler kinetik enerjisinin bir ölçüsüdür. Gazlar için kinetik enerji, mutlak sıcaklık dereceleriyle orantılıdır. Duyularla algılanmakta ve genellikle sıcak veya soğuk terimleri ile ifade edilmektedir. Teknik olarak bu değerlendirme doğru değildir.
  • 온도(溫度, 영어: temperature)은 물질의 뜨겁고 찬 정도를 나타내는 물리량이다. 온도는 물리학에서 가장 기초적이고 중요한 물리량 중 하나이다. 온도는 일반적으로 다음 두 가지 방법으로 정의된다.일반적인 정의의 온도는 온도의 경험적인 개념과, 독립적인 온도의 존재성을 보장하는 열역학 제 0법칙에 기초한다. 일반적인 정의의 온도는 온도의 기준을 통해 만들어진 온도계로 측정되는 값이다. 열역학적 정의의 온도는 19세기 중반 열기관과 열역학에서 이어지는 통계역학이 발전되면서 에너지와 엔트로피간의 이해가 높아지면서 파생되어 나왔다. 열역학적 정의의 온도는 에너지를 엔트로피로 편미분한 값으로 나타내지며, 다양한 기초적인 물리법칙과 근본적으로 관련되어있다. 열역학적 정의의 온도는 계의 평형이 이뤄지지 않으면 정의할 수 없다. 온도의 SI단위는 켈빈(K)이다. 켈빈은 물의 삼중점의 열역학적 온도의 1/273.16으로 정의된다.
  • Teplota je charakteristika tepelného stavu hmoty.V obecném významu je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého.V přírodních a technických vědách a jejich aplikacích je to skalární intenzivní veličina, která je vzhledem ke svému pravděpodobnostnímu charakteru vhodná k popisu stavu ustálených makroskopických systémů.Teplota souvisí s kinetickou energií částic látky.Teplota je základní fyzikální veličinou soustavy SI s jednotkou kelvin (K) a vedlejší jednotkou stupeň Celsia (°C).Nejnižší možnou teplotou je teplota absolutní nuly (0 K; -273,15 °C), ke které se lze libovolně přiblížit, avšak nelze jí dosáhnout.K měření teploty se používají teploměry.Teplota je ústředním pojmem termiky a klíčovou veličinou pro popis tepelných jevů.
  • A temperature is a numerical measure of hot and cold. Its measurement is by detection of heat radiation or particle velocity or kinetic energy, or by the bulk behavior of a thermometric material. It may be calibrated in any of various temperature scales, Celsius, Fahrenheit, Kelvin, etc.
  • La temperatura es una magnitud referida a las nociones comunes de caliente, tibio o frío que puede ser medida con un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica.
  • A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. Változása szorosan összefügg az anyag más makroszkopikus tulajdonságainak változásával. E jellemzőt az ember elsősorban tapintás útján, a hőérzettel észleli, másodsorban hőmérő segítségével. A hőtan, más néven termodinamika tudományának egyik alapfogalma.A hőmérséklet az intenzív mennyiségek közé tartozik, tehát nem additív, két test között hőáramlással kiegyenlítődésre törekszik.
  • Температурата (означава се със символа T) (на латински: temperatura — правилно смесване, нормално състояние) е физична величина, характеризираща средната кинетична енергия на частиците от дадена макроскопична система, намираща се в състояние на термодинамично равновесие.
rdfs:label
  • Température
  • Hőmérséklet
  • Suhu
  • Sıcaklık
  • Temperatur
  • Temperatura
  • Temperatura
  • Temperatura
  • Temperatura
  • Temperatura
  • Temperature
  • Temperatuur
  • Tenperatura
  • Teplota
  • Температура
  • Температура
  • 温度
  • 온도
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is prop-fr:quantité of
is skos:subject of
is foaf:primaryTopic of