dbo:abstract
|
- En logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu ] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus. C'est un des principes de la logique classique. Au début de la formalisation des mathématiques, ce principe a été tenu comme un dogme intangible. D'ailleurs, David Hilbert, un de ses grands défenseurs, a écrit, « Priver le mathématicien du tertium non datur [pas de troisième possibilité] serait enlever son télescope à l'astronome, son poing au boxeur. » Le tiers-exclu est souvent comparé au principe de non-contradiction qui affirme que les propositions p et non-p ne peuvent être simultanément vraies, c'est-à-dire que la conjonction « p et non-p » est nécessairement fausse. (fr)
- En logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu ] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus. C'est un des principes de la logique classique. Au début de la formalisation des mathématiques, ce principe a été tenu comme un dogme intangible. D'ailleurs, David Hilbert, un de ses grands défenseurs, a écrit, « Priver le mathématicien du tertium non datur [pas de troisième possibilité] serait enlever son télescope à l'astronome, son poing au boxeur. » Le tiers-exclu est souvent comparé au principe de non-contradiction qui affirme que les propositions p et non-p ne peuvent être simultanément vraies, c'est-à-dire que la conjonction « p et non-p » est nécessairement fausse. (fr)
|
rdfs:comment
|
- En logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu ] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus. C'est un des principes de la logique classique. Au début de la formalisation des mathématiques, ce principe a été tenu comme un dogme intangible. D'ailleurs, David Hilbert, un de ses grands défenseurs, a écrit, (fr)
- En logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu ] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus. C'est un des principes de la logique classique. Au début de la formalisation des mathématiques, ce principe a été tenu comme un dogme intangible. D'ailleurs, David Hilbert, un de ses grands défenseurs, a écrit, (fr)
|