En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe. Plus généralement, une ou plusieurs équations cartésiennes à n inconnues déterminent un ensemble de points de l'espace affine de dimension n.

Property Value
dbo:abstract
  • En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe. Plus généralement, une ou plusieurs équations cartésiennes à n inconnues déterminent un ensemble de points de l'espace affine de dimension n. (fr)
  • En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe. Plus généralement, une ou plusieurs équations cartésiennes à n inconnues déterminent un ensemble de points de l'espace affine de dimension n. (fr)
dbo:wikiPageID
  • 1258944 (xsd:integer)
dbo:wikiPageLength
  • 3300 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 183927092 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe. Plus généralement, une ou plusieurs équations cartésiennes à n inconnues déterminent un ensemble de points de l'espace affine de dimension n. (fr)
  • En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe. Plus généralement, une ou plusieurs équations cartésiennes à n inconnues déterminent un ensemble de points de l'espace affine de dimension n. (fr)
rdfs:label
  • Équation cartésienne (fr)
  • Équation cartésienne (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of