En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ».

Property Value
dbo:abstract
  • En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ». L'unicité est parfois précisée « à équivalence près » pour une relation d'équivalence définie sur l'ensemble dans lequel l'objet est recherché. Cela signifie qu'il existe éventuellement plusieurs éléments de l'ensemble satisfaisant ces propriétés, mais qu'ils sont tous équivalents pour la relation mentionnée. De façon analogue, lorsque l'unicité porte sur une structure, elle est souvent précisée « à isomorphisme près » (voir l'article « Essentiellement unique »). ExempleDans un espace topologique séparé, on a unicité de la limite de toute suite : si une suite converge, sa limite est unique. Mais une suite peut ne pas avoir de limite (dans ce cas, on n'a pas existence de la limite, ce qui ne remet pas en cause l'unicité). (fr)
  • En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ». L'unicité est parfois précisée « à équivalence près » pour une relation d'équivalence définie sur l'ensemble dans lequel l'objet est recherché. Cela signifie qu'il existe éventuellement plusieurs éléments de l'ensemble satisfaisant ces propriétés, mais qu'ils sont tous équivalents pour la relation mentionnée. De façon analogue, lorsque l'unicité porte sur une structure, elle est souvent précisée « à isomorphisme près » (voir l'article « Essentiellement unique »). ExempleDans un espace topologique séparé, on a unicité de la limite de toute suite : si une suite converge, sa limite est unique. Mais une suite peut ne pas avoir de limite (dans ce cas, on n'a pas existence de la limite, ce qui ne remet pas en cause l'unicité). (fr)
dbo:wikiPageID
  • 706402 (xsd:integer)
dbo:wikiPageLength
  • 3189 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 147694521 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ». (fr)
  • En mathématiques, l'unicité d'un objet satisfaisant certaines propriétés est le fait que tout objet satisfaisant les mêmes propriétés lui est égal. Autrement dit, il ne peut exister deux objets différents satisfaisant ces mêmes propriétés. Cependant, une démonstration de l'unicité ne suffit pas a priori pour en déduire l'existence de l'objet. La conjonction de l'existence et de l'unicité est usuellement notée à l'aide du quantificateur « ∃! ». (fr)
rdfs:label
  • Eindeutigkeit (de)
  • Entydighet (sv)
  • Quantificação de singularidade (pt)
  • Uniciteit (nl)
  • Unicité (mathématiques) (fr)
  • Eindeutigkeit (de)
  • Entydighet (sv)
  • Quantificação de singularidade (pt)
  • Uniciteit (nl)
  • Unicité (mathématiques) (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of