En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Elles sont devenues un outil essentiel en théorie quantique des champs après que Feynman les a popularisées en 1948 sous le nom de propagateur dans sa formulation en intégrale de chemin de l'électrodynamique quantique.

Property Value
dbo:abstract
  • En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850. Les fonctions de Green, qui seront dénommées ainsi par Riemann en 1869, seront alors abondamment utilisées, notamment par Neumann en 1877 pour sa théorie du potentiel Newtonien dans un espace à deux dimensions, puis en 1882 par Kirchhoff pour l'équation de propagation des ondes dans un espace à trois dimensions, et enfin par Helmholtz en acoustique. Elles sont devenues un outil essentiel en théorie quantique des champs après que Feynman les a popularisées en 1948 sous le nom de propagateur dans sa formulation en intégrale de chemin de l'électrodynamique quantique. (fr)
  • En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850. Les fonctions de Green, qui seront dénommées ainsi par Riemann en 1869, seront alors abondamment utilisées, notamment par Neumann en 1877 pour sa théorie du potentiel Newtonien dans un espace à deux dimensions, puis en 1882 par Kirchhoff pour l'équation de propagation des ondes dans un espace à trois dimensions, et enfin par Helmholtz en acoustique. Elles sont devenues un outil essentiel en théorie quantique des champs après que Feynman les a popularisées en 1948 sous le nom de propagateur dans sa formulation en intégrale de chemin de l'électrodynamique quantique. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 543270 (xsd:integer)
dbo:wikiPageLength
  • 24297 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190899306 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Elles sont devenues un outil essentiel en théorie quantique des champs après que Feynman les a popularisées en 1948 sous le nom de propagateur dans sa formulation en intégrale de chemin de l'électrodynamique quantique. (fr)
  • En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Elles sont devenues un outil essentiel en théorie quantique des champs après que Feynman les a popularisées en 1948 sous le nom de propagateur dans sa formulation en intégrale de chemin de l'électrodynamique quantique. (fr)
rdfs:label
  • Fonction de Green (fr)
  • Funkcja Greena (pl)
  • Funzione di Green (it)
  • Green's function (en)
  • Greenfunktion (sv)
  • Greensche Funktion (de)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of