Property |
Value |
dbo:abstract
|
- Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1.
* Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2.
* ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? La réponse affirmative fut donnée par Aleksandr Gelfond en 1934, et raffinée par Theodor Schneider en 1935. Ce résultat est connu sous le nom de théorème de Gelfond ou de Gelfond-Schneider. Une généralisation en fut conjecturée par Gelfond et démontrée par Alan Baker. (fr)
- Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1.
* Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2.
* ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? La réponse affirmative fut donnée par Aleksandr Gelfond en 1934, et raffinée par Theodor Schneider en 1935. Ce résultat est connu sous le nom de théorème de Gelfond ou de Gelfond-Schneider. Une généralisation en fut conjecturée par Gelfond et démontrée par Alan Baker. (fr)
|
dbo:isPartOf
| |
dbo:namedAfter
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1740 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1.
* Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2.
* ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? (fr)
- Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1.
* Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2.
* ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? (fr)
|
rdfs:label
|
- Hilberts siebtes Problem (de)
- Septième problème de Hilbert (fr)
- Sétimo problema de Hilbert (pt)
- 希爾伯特第七問題 (zh)
- Hilberts siebtes Problem (de)
- Septième problème de Hilbert (fr)
- Sétimo problema de Hilbert (pt)
- 希爾伯特第七問題 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |