Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1. * Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2. * ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ?

Property Value
dbo:abstract
  • Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1. * Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2. * ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? La réponse affirmative fut donnée par Aleksandr Gelfond en 1934, et raffinée par Theodor Schneider en 1935. Ce résultat est connu sous le nom de théorème de Gelfond ou de Gelfond-Schneider. Une généralisation en fut conjecturée par Gelfond et démontrée par Alan Baker. (fr)
  • Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1. * Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2. * ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? La réponse affirmative fut donnée par Aleksandr Gelfond en 1934, et raffinée par Theodor Schneider en 1935. Ce résultat est connu sous le nom de théorème de Gelfond ou de Gelfond-Schneider. Une généralisation en fut conjecturée par Gelfond et démontrée par Alan Baker. (fr)
dbo:isPartOf
dbo:namedAfter
dbo:wikiPageID
  • 220942 (xsd:integer)
dbo:wikiPageLength
  • 1740 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 178713356 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1. * Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2. * ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? (fr)
  • Le septième problème de Hilbert concerne l'irrationalité et la transcendance de certains nombres. Il pose deux questions, dont la première est énoncée géométriquement mais peut se reformuler comme le cas particulier a = –1 de la seconde : 1. * Dans un triangle isocèle, si le rapport de l'angle de la base à l'angle du sommet est algébrique mais non rationnel, alors le rapport entre la base et le côté est-il toujours transcendant ? 2. * ab est-il transcendant, pour a un nombre algébrique différent de 0 et de 1 et b nombre algébrique irrationnel ? (fr)
rdfs:label
  • Hilberts siebtes Problem (de)
  • Septième problème de Hilbert (fr)
  • Sétimo problema de Hilbert (pt)
  • 希爾伯特第七問題 (zh)
  • Hilberts siebtes Problem (de)
  • Septième problème de Hilbert (fr)
  • Sétimo problema de Hilbert (pt)
  • 希爾伯特第七問題 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of