En mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau OK des entiers de K, où NK/ℚ(I) désigne la norme de I (relative au corps ℚ des rationnels). Cette norme est égale au cardinal de l'anneau quotient OK/I. En particulier, ζℚ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζK ont une signification considérable en théorie algébrique des nombres.

Property Value
dbo:abstract
  • En mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau OK des entiers de K, où NK/ℚ(I) désigne la norme de I (relative au corps ℚ des rationnels). Cette norme est égale au cardinal de l'anneau quotient OK/I. En particulier, ζℚ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζK ont une signification considérable en théorie algébrique des nombres. (fr)
  • En mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau OK des entiers de K, où NK/ℚ(I) désigne la norme de I (relative au corps ℚ des rationnels). Cette norme est égale au cardinal de l'anneau quotient OK/I. En particulier, ζℚ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζK ont une signification considérable en théorie algébrique des nombres. (fr)
dbo:wikiPageID
  • 150819 (xsd:integer)
dbo:wikiPageLength
  • 3151 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190044315 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau OK des entiers de K, où NK/ℚ(I) désigne la norme de I (relative au corps ℚ des rationnels). Cette norme est égale au cardinal de l'anneau quotient OK/I. En particulier, ζℚ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζK ont une signification considérable en théorie algébrique des nombres. (fr)
  • En mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau OK des entiers de K, où NK/ℚ(I) désigne la norme de I (relative au corps ℚ des rationnels). Cette norme est égale au cardinal de l'anneau quotient OK/I. En particulier, ζℚ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζK ont une signification considérable en théorie algébrique des nombres. (fr)
rdfs:label
  • Dedekind zeta function (en)
  • Dedekinds zetafunktion (sv)
  • Dedekindsche Zeta-Funktion (de)
  • Fonction zêta de Dedekind (fr)
  • دالة زيتا لديدكايند (ar)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of