La diffraction est le comportement des ondes lorsqu’elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par le fait qu'après la rencontre d’un objet, la densité de l'onde n’est pas conservée contrairement aux lois de l’optique géométrique. Dans l’approche du phénomène, on a donc deux niveaux d’interférence : la cellule unitaire (diffraction par une seule cellule), et entre les cellules (diffraction de l'objet complet).

Property Value
dbo:abstract
  • La diffraction est le comportement des ondes lorsqu’elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par le fait qu'après la rencontre d’un objet, la densité de l'onde n’est pas conservée contrairement aux lois de l’optique géométrique. La diffraction s’observe avec la lumière, mais de manière générale avec toutes les ondes : le son, les vagues, les ondes radio, rayons X, etc. Elle permet de mettre en évidence le caractère ondulatoire d'un phénomène et même de corps matériels tels que des électrons, neutrons, atomes froids. Dans le domaine de l’étude des phénomènes de propagation des ondes, la diffraction intervient systématiquement lorsque l’onde rencontre un objet qui entrave une partie de sa propagation (typiquement le bord d'un mur ou le bord d'un objectif). Elle est ensuite diffractée avec d'autant plus d'intensité que la dimension de l'ouverture qu'elle franchit se rapproche de sa longueur d'onde : une onde type radio sera facilement diffractée par des bâtiments dans une ville, tandis que la diffraction lumineuse y sera imperceptible. Cette dernière commencera en revanche à se faire ressentir dans un objectif où elle imposera d'ailleurs une limite théorique de résolution. Pour être mise en évidence clairement, la taille de l’élément diffractant que rencontre l’onde doit avoir une taille caractéristique relativement petite par rapport à la distance à laquelle l'observateur se place. Si l’observateur est proche de l'objet, il observera l’image géométrique de l’objet : celle qui nous apparaît habituellement. La diffraction des particules de matière, c’est-à-dire l'observation des particules de matière projetées contre un objet, permet de prouver que les particules se comportent aussi comme des ondes. Plus la longueur d’une onde est grande par rapport à un obstacle, plus cette onde aura de facilité à contourner, à envelopper l’obstacle. Ainsi les grandes ondes (longueurs d'onde hectométriques et kilométriques) peuvent pénétrer dans le moindre recoin de la surface terrestre tandis que les retransmissions de télévision par satellite ne sont possibles que si l’antenne de réception « voit » le satellite. Concernant l’approche calculatoire, deux méthodes peuvent être utilisées. Premièrement, on peut considérer que chaque surface élémentaire de l’objet émet une onde sphérique proportionnelle à cette surface (principe de Huygens-Fresnel), et on somme (ou on intègre) la contribution de chaque surface. Deuxièmement, pour expliquer totalement la figure de diffraction, on utilise la théorie de Kirchhoff. La notion d'interférence prend toute son ampleur lorsque l’objet a une structure périodique (réseau). Dans ce cas, l’objet peut être représenté comme une cellule élémentaire répétée à intervalles réguliers. Le résultat de l’onde est alors la superposition — l’interférence — des ondes diffractées par les différentes cellules (la cellule unitaire étant elle-même composée de points qui diffusent chacun l’onde). C’est ce phénomène qui cause l'irisation par un cédérom. Dans l’approche du phénomène, on a donc deux niveaux d’interférence : la cellule unitaire (diffraction par une seule cellule), et entre les cellules (diffraction de l'objet complet). (fr)
  • La diffraction est le comportement des ondes lorsqu’elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par le fait qu'après la rencontre d’un objet, la densité de l'onde n’est pas conservée contrairement aux lois de l’optique géométrique. La diffraction s’observe avec la lumière, mais de manière générale avec toutes les ondes : le son, les vagues, les ondes radio, rayons X, etc. Elle permet de mettre en évidence le caractère ondulatoire d'un phénomène et même de corps matériels tels que des électrons, neutrons, atomes froids. Dans le domaine de l’étude des phénomènes de propagation des ondes, la diffraction intervient systématiquement lorsque l’onde rencontre un objet qui entrave une partie de sa propagation (typiquement le bord d'un mur ou le bord d'un objectif). Elle est ensuite diffractée avec d'autant plus d'intensité que la dimension de l'ouverture qu'elle franchit se rapproche de sa longueur d'onde : une onde type radio sera facilement diffractée par des bâtiments dans une ville, tandis que la diffraction lumineuse y sera imperceptible. Cette dernière commencera en revanche à se faire ressentir dans un objectif où elle imposera d'ailleurs une limite théorique de résolution. Pour être mise en évidence clairement, la taille de l’élément diffractant que rencontre l’onde doit avoir une taille caractéristique relativement petite par rapport à la distance à laquelle l'observateur se place. Si l’observateur est proche de l'objet, il observera l’image géométrique de l’objet : celle qui nous apparaît habituellement. La diffraction des particules de matière, c’est-à-dire l'observation des particules de matière projetées contre un objet, permet de prouver que les particules se comportent aussi comme des ondes. Plus la longueur d’une onde est grande par rapport à un obstacle, plus cette onde aura de facilité à contourner, à envelopper l’obstacle. Ainsi les grandes ondes (longueurs d'onde hectométriques et kilométriques) peuvent pénétrer dans le moindre recoin de la surface terrestre tandis que les retransmissions de télévision par satellite ne sont possibles que si l’antenne de réception « voit » le satellite. Concernant l’approche calculatoire, deux méthodes peuvent être utilisées. Premièrement, on peut considérer que chaque surface élémentaire de l’objet émet une onde sphérique proportionnelle à cette surface (principe de Huygens-Fresnel), et on somme (ou on intègre) la contribution de chaque surface. Deuxièmement, pour expliquer totalement la figure de diffraction, on utilise la théorie de Kirchhoff. La notion d'interférence prend toute son ampleur lorsque l’objet a une structure périodique (réseau). Dans ce cas, l’objet peut être représenté comme une cellule élémentaire répétée à intervalles réguliers. Le résultat de l’onde est alors la superposition — l’interférence — des ondes diffractées par les différentes cellules (la cellule unitaire étant elle-même composée de points qui diffusent chacun l’onde). C’est ce phénomène qui cause l'irisation par un cédérom. Dans l’approche du phénomène, on a donc deux niveaux d’interférence : la cellule unitaire (diffraction par une seule cellule), et entre les cellules (diffraction de l'objet complet). (fr)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 32567 (xsd:integer)
dbo:wikiPageLength
  • 8722 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190498126 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wikiversity
  • Diffraction (fr)
  • Diffraction (fr)
prop-fr:wiktionary
  • diffraction (fr)
  • diffraction (fr)
dct:subject
rdfs:comment
  • La diffraction est le comportement des ondes lorsqu’elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par le fait qu'après la rencontre d’un objet, la densité de l'onde n’est pas conservée contrairement aux lois de l’optique géométrique. Dans l’approche du phénomène, on a donc deux niveaux d’interférence : la cellule unitaire (diffraction par une seule cellule), et entre les cellules (diffraction de l'objet complet). (fr)
  • La diffraction est le comportement des ondes lorsqu’elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par le fait qu'après la rencontre d’un objet, la densité de l'onde n’est pas conservée contrairement aux lois de l’optique géométrique. Dans l’approche du phénomène, on a donc deux niveaux d’interférence : la cellule unitaire (diffraction par une seule cellule), et entre les cellules (diffraction de l'objet complet). (fr)
rdfs:label
  • Diffraction (fr)
  • Beugung (Physik) (de)
  • Diffractie (nl)
  • Diffrazione (it)
  • Difracció (ca)
  • Difracción (es)
  • حيود (ar)
  • Diffraction (fr)
  • Beugung (Physik) (de)
  • Diffractie (nl)
  • Diffrazione (it)
  • Difracció (ca)
  • Difracción (es)
  • حيود (ar)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:mainArticleForCategory of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of