Il Triangolo di Tartaglia (detto anche triangolo di Pascal o Khayyàm o Yanghui) è una disposizione geometrica dei coefficienti binomiali, ossia dei coefficienti dello sviluppo del binomio (a+b) elevato ad una qualsiasi potenza n, a forma di triangolo.

PropertyValue
dbpedia-owl:abstract
  • In mathematics, Pascal's triangle is a triangular array of the binomial coefficients. It is named after the French mathematician Blaise Pascal in much of the Western world, although other mathematicians studied it centuries before him in India, Greece, Iran, China, Germany, and Italy.The rows of Pascal's triangle are conventionally enumerated starting with row n = 0 at the top. The entries in each row are numbered from the left beginning with k = 0 and are usually staggered relative to the numbers in the adjacent rows. A simple construction of the triangle proceeds in the following manner. On row 0, write only the number 1. Then, to construct the elements of following rows, add the number above and to the left with the number above and to the right to find the new value. If either the number to the right or left is not present, substitute a zero in its place. For example, the first number in the first row is 0 + 1 = 1, whereas the numbers 1 and 3 in the third row are added to produce the number 4 in the fourth row.This construction is related to the binomial coefficients by Pascal's rule, which says that ifthenfor any non-negative integer n and any integer k between 0 and n.Pascal's triangle has higher dimensional generalizations. The three-dimensional version is called Pascal's pyramid or Pascal's tetrahedron, while the general versions are called Pascal's simplices.
  • Il Triangolo di Tartaglia (detto anche triangolo di Pascal o Khayyàm o Yanghui) è una disposizione geometrica dei coefficienti binomiali, ossia dei coefficienti dello sviluppo del binomio (a+b) elevato ad una qualsiasi potenza n, a forma di triangolo.
  • Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. Имеет применение в теории вероятностей.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 89079 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 26662 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 71 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 109879101 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
prop-fr:wiktionary
  • triangle de Pascal
prop-fr:wiktionaryTitre
  • triangle de Pascal
  • triangle de Pascal
dcterms:subject
rdfs:comment
  • Il Triangolo di Tartaglia (detto anche triangolo di Pascal o Khayyàm o Yanghui) è una disposizione geometrica dei coefficienti binomiali, ossia dei coefficienti dello sviluppo del binomio (a+b) elevato ad una qualsiasi potenza n, a forma di triangolo.
  • Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. Имеет применение в теории вероятностей.
  • In mathematics, Pascal's triangle is a triangular array of the binomial coefficients. It is named after the French mathematician Blaise Pascal in much of the Western world, although other mathematicians studied it centuries before him in India, Greece, Iran, China, Germany, and Italy.The rows of Pascal's triangle are conventionally enumerated starting with row n = 0 at the top.
rdfs:label
  • Triangle de Pascal
  • Driehoek van Pascal
  • Pascal üçgeni
  • Pascal's triangle
  • Pascal-háromszög
  • Pascalen hiruki
  • Pascalsches Dreieck
  • Pascalův trojúhelník
  • Segitiga Pascal
  • Triangle de Tartaglia
  • Triangolo di Tartaglia
  • Triángulo de Pascal
  • Triângulo de Pascal
  • Trójkąt Pascala
  • Треугольник Паскаля
  • Триъгълник на Паскал
  • パスカルの三角形
  • 파스칼의 삼각형
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:notableIdea of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of