Property |
Value |
dbo:abstract
|
- En géométrie riemannienne, le théorème de la sphère montre que des informations sur la courbure d'une variété, sorte d'espace courbe à plusieurs dimensions, peuvent contraindre fortement la topologie, c'est-à-dire la forme globale de cet espace. Le théorème original est établi en 1960-61 par Marcel Berger et Wilhelm Klingenberg, comme généralisation d'un premier résultat de (en) de 1951. Il a été considérablement amélioré en 2007 par Simon Brendle et Richard Schoen. Cette nouvelle version du théorème est parfois appelée théorème de la sphère différentiable. (fr)
- En géométrie riemannienne, le théorème de la sphère montre que des informations sur la courbure d'une variété, sorte d'espace courbe à plusieurs dimensions, peuvent contraindre fortement la topologie, c'est-à-dire la forme globale de cet espace. Le théorème original est établi en 1960-61 par Marcel Berger et Wilhelm Klingenberg, comme généralisation d'un premier résultat de (en) de 1951. Il a été considérablement amélioré en 2007 par Simon Brendle et Richard Schoen. Cette nouvelle version du théorème est parfois appelée théorème de la sphère différentiable. (fr)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 15675 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:année
| |
prop-fr:arxiv
| |
prop-fr:doi
| |
prop-fr:journal
| |
prop-fr:lang
| |
prop-fr:mr
| |
prop-fr:nom
|
- Schoen (fr)
- Brendle (fr)
- Schoen (fr)
- Brendle (fr)
|
prop-fr:numéro
| |
prop-fr:pages
| |
prop-fr:prénom
|
- Richard (fr)
- Simon (fr)
- Richard (fr)
- Simon (fr)
|
prop-fr:titre
|
- Curvature, Sphere Theorems, and the Ricci Flow (fr)
- Curvature, Sphere Theorems, and the Ricci Flow (fr)
|
prop-fr:volume
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En géométrie riemannienne, le théorème de la sphère montre que des informations sur la courbure d'une variété, sorte d'espace courbe à plusieurs dimensions, peuvent contraindre fortement la topologie, c'est-à-dire la forme globale de cet espace. Le théorème original est établi en 1960-61 par Marcel Berger et Wilhelm Klingenberg, comme généralisation d'un premier résultat de (en) de 1951. Il a été considérablement amélioré en 2007 par Simon Brendle et Richard Schoen. Cette nouvelle version du théorème est parfois appelée théorème de la sphère différentiable. (fr)
- En géométrie riemannienne, le théorème de la sphère montre que des informations sur la courbure d'une variété, sorte d'espace courbe à plusieurs dimensions, peuvent contraindre fortement la topologie, c'est-à-dire la forme globale de cet espace. Le théorème original est établi en 1960-61 par Marcel Berger et Wilhelm Klingenberg, comme généralisation d'un premier résultat de (en) de 1951. Il a été considérablement amélioré en 2007 par Simon Brendle et Richard Schoen. Cette nouvelle version du théorème est parfois appelée théorème de la sphère différentiable. (fr)
|
rdfs:label
|
- Теорема про сферу (диференціальна геометрія) (uk)
- Sphere theorem (en)
- Sphärensatz (de)
- Théorème de la sphère (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |