Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions.

Property Value
dbo:abstract
  • Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
  • Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 878099 (xsd:integer)
dbo:wikiPageLength
  • 3253 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190909619 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
  • Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
rdfs:label
  • Super àlgebra de Lie (ca)
  • Superalgèbre de Lie (fr)
  • Super àlgebra de Lie (ca)
  • Superalgèbre de Lie (fr)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of