Property |
Value |
dbo:abstract
|
- Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
- Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
|
dbo:namedAfter
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3253 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
- Une superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une ℤ2-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions. (fr)
|
rdfs:label
|
- Super àlgebra de Lie (ca)
- Superalgèbre de Lie (fr)
- Super àlgebra de Lie (ca)
- Superalgèbre de Lie (fr)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |