Soit A un opérateur linéaire (non nécessairement continu) défini sur un espace de Banach. Pour tout nombre complexe λ tel que (λ I – A)–1 existe et est continu, on définit la résolvante de A par : L'ensemble des valeurs de λ pour lesquelles la résolvante existe est appelé l'ensemble résolvant, noté ρ(A). Le spectre σ(A) est le complémentaire de l'ensemble résolvant : σ(A) = ℂ \ ρ(A). * Portail de l'analyse

Property Value
dbo:abstract
  • Soit A un opérateur linéaire (non nécessairement continu) défini sur un espace de Banach. Pour tout nombre complexe λ tel que (λ I – A)–1 existe et est continu, on définit la résolvante de A par : L'ensemble des valeurs de λ pour lesquelles la résolvante existe est appelé l'ensemble résolvant, noté ρ(A). Le spectre σ(A) est le complémentaire de l'ensemble résolvant : σ(A) = ℂ \ ρ(A). * Portail de l'analyse (fr)
  • Soit A un opérateur linéaire (non nécessairement continu) défini sur un espace de Banach. Pour tout nombre complexe λ tel que (λ I – A)–1 existe et est continu, on définit la résolvante de A par : L'ensemble des valeurs de λ pour lesquelles la résolvante existe est appelé l'ensemble résolvant, noté ρ(A). Le spectre σ(A) est le complémentaire de l'ensemble résolvant : σ(A) = ℂ \ ρ(A). * Portail de l'analyse (fr)
dbo:wikiPageID
  • 1134411 (xsd:integer)
dbo:wikiPageLength
  • 956 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 168973451 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Soit A un opérateur linéaire (non nécessairement continu) défini sur un espace de Banach. Pour tout nombre complexe λ tel que (λ I – A)–1 existe et est continu, on définit la résolvante de A par : L'ensemble des valeurs de λ pour lesquelles la résolvante existe est appelé l'ensemble résolvant, noté ρ(A). Le spectre σ(A) est le complémentaire de l'ensemble résolvant : σ(A) = ℂ \ ρ(A). * Portail de l'analyse (fr)
  • Soit A un opérateur linéaire (non nécessairement continu) défini sur un espace de Banach. Pour tout nombre complexe λ tel que (λ I – A)–1 existe et est continu, on définit la résolvante de A par : L'ensemble des valeurs de λ pour lesquelles la résolvante existe est appelé l'ensemble résolvant, noté ρ(A). Le spectre σ(A) est le complémentaire de l'ensemble résolvant : σ(A) = ℂ \ ρ(A). * Portail de l'analyse (fr)
rdfs:label
  • Resolvent (anàlisi matemàtica) (ca)
  • Resolvent formalism (en)
  • Resolvente (de)
  • Résolvante (fr)
  • Резольвента интегрального уравнения (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of