En théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera

Property Value
dbo:abstract
  • En théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera (fr)
  • En théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera (fr)
dbo:wikiPageID
  • 6150866 (xsd:integer)
dbo:wikiPageLength
  • 4208 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 104232807 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:name
  • Loi du non centrée (fr)
  • Loi du non centrée (fr)
prop-fr:parameters
  • (fr)
  • (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera (fr)
  • En théorie des probabilités et en statistique, la loi du non centrée est une généralisation la loi du χ. Si , sont k variables aléatoires indépendantes de loi normale de moyennes et écart-type respectifs et , alors est une variable aléatoire de loi du non centrée. Cette loi a deux parametres : un entier qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de variables ), et un réel relatif à la moyenne des variables par la formule : On dira que X suit une loi du χ non centrée avec k degrés de liberté et de paramètre λ, on notera (fr)
rdfs:label
  • Loi du χ non centrée (fr)
  • Нецентрований хі розподіл (uk)
  • Loi du χ non centrée (fr)
  • Нецентрований хі розподіл (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of