La géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique. Un outil très puissant qu'elle utilise est la théorie des ensembles, par le biais des propriétés structurelles (groupe, groupe commutatif, etc.) de tel ou tel ensemble de transformations.

Property Value
dbo:abstract
  • La géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique. Un outil très puissant qu'elle utilise est la théorie des ensembles, par le biais des propriétés structurelles (groupe, groupe commutatif, etc.) de tel ou tel ensemble de transformations. La géométrie pure est antérieure à la géométrie analytique (voir l'histoire de la géométrie) et englobe donc tous les travaux antérieurs à cette dernière. Toutefois, on assimile parfois le terme de géométrie synthétique au courant qui s'est affirmé, en réaction à l'emploi jugé abusif des méthodes analytiques au début du XIXe siècle. Les travaux les plus connus de ce courant furent l'œuvre de Monge, Brianchon, Dupin, Gergonne, Chasles, Poncelet, Steiner qui développa une approche synthétique de la géométrie projective, Lemoine, von Staudt. (fr)
  • La géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique. Un outil très puissant qu'elle utilise est la théorie des ensembles, par le biais des propriétés structurelles (groupe, groupe commutatif, etc.) de tel ou tel ensemble de transformations. La géométrie pure est antérieure à la géométrie analytique (voir l'histoire de la géométrie) et englobe donc tous les travaux antérieurs à cette dernière. Toutefois, on assimile parfois le terme de géométrie synthétique au courant qui s'est affirmé, en réaction à l'emploi jugé abusif des méthodes analytiques au début du XIXe siècle. Les travaux les plus connus de ce courant furent l'œuvre de Monge, Brianchon, Dupin, Gergonne, Chasles, Poncelet, Steiner qui développa une approche synthétique de la géométrie projective, Lemoine, von Staudt. (fr)
dbo:wikiPageID
  • 803660 (xsd:integer)
dbo:wikiPageLength
  • 3393 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 155154547 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:année
  • 1919 (xsd:integer)
prop-fr:lienAuteur
  • Pierre Boutroux (fr)
  • Pierre Boutroux (fr)
prop-fr:nom
  • Boutroux (fr)
  • Boutroux (fr)
prop-fr:prénom
  • Pierre (fr)
  • Pierre (fr)
prop-fr:titre
  • Les principes de l'analyse mathématique, tome 2 (fr)
  • Les principes de l'analyse mathématique, tome 2 (fr)
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Hermann (fr)
  • Hermann (fr)
dct:subject
rdfs:comment
  • La géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique. Un outil très puissant qu'elle utilise est la théorie des ensembles, par le biais des propriétés structurelles (groupe, groupe commutatif, etc.) de tel ou tel ensemble de transformations. (fr)
  • La géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique. Un outil très puissant qu'elle utilise est la théorie des ensembles, par le biais des propriétés structurelles (groupe, groupe commutatif, etc.) de tel ou tel ensemble de transformations. (fr)
rdfs:label
  • Geometria sintética (pt)
  • Geometria syntetyczna (pl)
  • Geometría sintética (es)
  • Géométrie synthétique (fr)
  • Синтетический метод (ru)
  • Синтетична геометрія (uk)
  • Geometria sintética (pt)
  • Geometria syntetyczna (pl)
  • Geometría sintética (es)
  • Géométrie synthétique (fr)
  • Синтетический метод (ru)
  • Синтетична геометрія (uk)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of