Property |
Value |
dbo:abstract
|
- En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W⊥ d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit
* Exemple 1
* Exemple 2. Calcul par la méthode gaussienne (fr)
- En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W⊥ d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit
* Exemple 1
* Exemple 2. Calcul par la méthode gaussienne (fr)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2248 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:année
| |
prop-fr:isbn
| |
prop-fr:langue
| |
prop-fr:lienAuteur
|
- Paul Halmos (fr)
- Paul Halmos (fr)
|
prop-fr:lieu
|
- Berlin, New York (fr)
- Berlin, New York (fr)
|
prop-fr:nom
| |
prop-fr:pagesTotales
| |
prop-fr:prénom
|
- Paul R. (fr)
- Paul R. (fr)
|
prop-fr:titre
|
- Finite-dimensional vector spaces (fr)
- Finite-dimensional vector spaces (fr)
|
prop-fr:wikiPageUsesTemplate
| |
prop-fr:éditeur
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W⊥ d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit
* Exemple 1
* Exemple 2. Calcul par la méthode gaussienne (fr)
- En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal W⊥ d'un sous-espace vectoriel W d'un espace préhilbertien V est l'ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c'est-à-dire Le complément orthogonal est toujours un sous-espace vectoriel fermé. Pour un espace de Hilbert, d'après le théorème du supplémentaire orthogonal, le complément orthogonal du complément orthogonal de W est l'adhérence de W, soit
* Exemple 1
* Exemple 2. Calcul par la méthode gaussienne (fr)
|
rdfs:label
|
- Complement ortogonal (ca)
- Complément orthogonal (fr)
- Orthogonal complement (en)
- Sottospazio ortogonale (it)
- Ортогональне доповнення (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |