Property |
Value |
dbo:abstract
|
- En mathématiques, et plus particulièrement en analyse, une fonction réelle est dite coercive si « elle tend vers l'infini à l'infini », éventuellement dans une partie spécifiée de l'ensemble de départ. Une définition analogue est utilisée pour les formes bilinéaires. En analyse fonctionnelle la coercivité est aussi définie pour les opérateurs d’un espace de Hilbert dans lui-même et plus généralement pour les opérateurs d'un espace de Banach dans son dual topologique . (fr)
- En mathématiques, et plus particulièrement en analyse, une fonction réelle est dite coercive si « elle tend vers l'infini à l'infini », éventuellement dans une partie spécifiée de l'ensemble de départ. Une définition analogue est utilisée pour les formes bilinéaires. En analyse fonctionnelle la coercivité est aussi définie pour les opérateurs d’un espace de Hilbert dans lui-même et plus généralement pour les opérateurs d'un espace de Banach dans son dual topologique . (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4432 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, et plus particulièrement en analyse, une fonction réelle est dite coercive si « elle tend vers l'infini à l'infini », éventuellement dans une partie spécifiée de l'ensemble de départ. Une définition analogue est utilisée pour les formes bilinéaires. En analyse fonctionnelle la coercivité est aussi définie pour les opérateurs d’un espace de Hilbert dans lui-même et plus généralement pour les opérateurs d'un espace de Banach dans son dual topologique . (fr)
- En mathématiques, et plus particulièrement en analyse, une fonction réelle est dite coercive si « elle tend vers l'infini à l'infini », éventuellement dans une partie spécifiée de l'ensemble de départ. Une définition analogue est utilisée pour les formes bilinéaires. En analyse fonctionnelle la coercivité est aussi définie pour les opérateurs d’un espace de Hilbert dans lui-même et plus généralement pour les opérateurs d'un espace de Banach dans son dual topologique . (fr)
|
rdfs:label
|
- Coercivité (fr)
- Koerzitive Funktion (de)
- Coercivité (fr)
- Koerzitive Funktion (de)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |